已知二次函數(shù)y=ax2+bx+c(a≠0)的圖象經(jīng)過O(0,0),M(1,1)和N(n,0)
(n≠0)三點.
(1)若該函數(shù)圖象頂點恰為M點,寫出此時n的值及y的最大值;
(2)當n=-2時,確定這個二次函數(shù)的解析式,并判斷此時y是否有最大值;
(3)由(1)、(2)可知,n的取值變化,會影響該函數(shù)圖象的開口方向.請求出n滿足什么條件時,y有最小值.
【答案】分析:(1)M點為頂點,則O、N關(guān)于x=1對稱,M點為最大值點,由此得出答案;
(2)由于拋物線的圖象經(jīng)過原點,故c=0;將M、N兩點坐標代入y=ax2+bx聯(lián)立求解,并由解出的a值判斷是否有最大值;
(3)將M、N兩點坐標代入y=ax2+bx聯(lián)立得出含a、n的方程,由a>0確定n滿足的條件.
解答:解:(1)由二次函數(shù)圖象的對稱性可知n=2;
y的最大值為1.

(2)由題意得:,
解這個方程組得:
故這個二次函數(shù)的解析式為y=;
>0,
∴y沒有最大值;

(3)由題意得:,
整理得:an2+(1-a)n=0,即n(an+1-a)=0;(8分)
∵n≠0,
∴an+1-a=0;
故(1-n)a=1,而n≠1;
若y有最小值,則需a>0,∴1-n>0,即n<1;
∴n<1且n≠0時,y有最小值.
點評:此題主要考查了拋物線的性質(zhì)、二次函數(shù)圖象與系數(shù)的關(guān)系等重要知識點,難度適中.
練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

21、已知二次函數(shù)y=a(x+1)2+c的圖象如圖所示,則函數(shù)y=ax+c的圖象只可能是(  )

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,已知二次函數(shù)y=ax+bx+c的圖象與x軸交于點A.B,與y軸交于點 C.

(1)寫出A. B.C三點的坐標;(2)求出二次函數(shù)的解析式.

查看答案和解析>>

科目:初中數(shù)學 來源:2013-2014學年廣東省廣州市海珠區(qū)九年級上學期期末數(shù)學試卷(解析版) 題型:選擇題

已知二次函數(shù)y=ax²+bx+c(a≠0)的圖像如圖所示,則下列結(jié)論中正確的是(   )

A.a>0             B.3是方程ax²+bx+c=0的一個根

C.a+b+c=0          D.當x<1時,y隨x的增大而減小

 

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:填空題

已知二次函數(shù)y=ax+bx+c(a≠0,a,b,c為常數(shù)),對稱軸為直線x=1,它的部分自變量與函數(shù)值y的對應值如下表,寫出方程ax2+bx+c=0的一個正數(shù)解的近似值________(精確到0.1).
x-0.1-0.2-0.3-0.4
y=ax2+bx+c-0.58-0.120.380.92

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

已知二次函數(shù)y=ax²+bx+c(c≠0)的圖像如圖4所示,下列說法錯誤的是:

(A)圖像關(guān)于直線x=1對稱

(B)函數(shù)y=ax²+bx+c(c ≠0)的最小值是 -4

(C)-1和3是方程ax²+bx+c=0(c ≠0)的兩個根

(D)當x<1時,y隨x的增大而增大

查看答案和解析>>

同步練習冊答案