【題目】如圖,王虎使一長(zhǎng)為4 cm,寬為3 cm的長(zhǎng)方形木板,在桌面上做無滑動(dòng)地翻滾(順時(shí)針方向),木板上點(diǎn)A位置變化為AA1A2,其中第二次翻滾被桌面上一小木塊擋住,使木板與桌面成30°角,則點(diǎn)A翻滾到A2位置時(shí)共走過的路徑長(zhǎng)為?

【答案】cm

【解析】試題分析:根據(jù)旋轉(zhuǎn)的定義得到點(diǎn)AB為旋轉(zhuǎn)中心,以∠ABA1為旋轉(zhuǎn)角,順時(shí)針旋轉(zhuǎn)得到A1;A2是由A1C為旋轉(zhuǎn)中心,以∠A1CA2為旋轉(zhuǎn)角,順時(shí)針旋轉(zhuǎn)得到,由于∠ABA1=90°,A1CA2=60°,AB==5cm,CA1=3cm,然后根據(jù)弧長(zhǎng)公式計(jì)算即可.

試題解析:點(diǎn)AB為旋轉(zhuǎn)中心,以∠ABA1為旋轉(zhuǎn)角,順時(shí)針旋轉(zhuǎn)得到A1;A2是由A1C為旋轉(zhuǎn)中心,以∠A1CA2為旋轉(zhuǎn)角,順時(shí)針旋轉(zhuǎn)得到,

∵∠ABA1=90°,A1CA2=60°,AB==5cm,CA1=3cm
∴點(diǎn)A翻滾到A2位置時(shí)共走過的路徑長(zhǎng)= cm).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知在△ABC中,AB=AC,D為BC邊的中點(diǎn),過點(diǎn)D作DE⊥AB,DF⊥AC,垂足分別為E,F(xiàn).

(1)求證:DE=DF;

(2)若∠A=,BE=5.

①求證: ②求△ABC的周長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】ABC中,AB=CB,ABC=90°,F(xiàn)為AB延長(zhǎng)線上一點(diǎn),點(diǎn)E在BC上,且AE=CF.

(1)求證:RtABERtCBF

(2)若CAE=30°,求ACF的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,ABC沿直線l向右移了3厘米,得FDE,且BC6厘米,∠B40°.

(1)BE;

(2)求∠FDB的度數(shù);

(3)找出圖中相等的線段(不另添加線段);

(4)找出圖中互相平行的線段(不另添加線段)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】不等式a2a成立的條件是( ).

A.不存在這樣的aB.a0

C.a0D.a0

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,∠B=90°,AB=3,BC=4,CD=12,AD=13.求四邊形ABCD的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】給出定義:設(shè)一條直線與一條拋物線只有一個(gè)公共點(diǎn),且這條直線與這條拋物線的對(duì)稱軸不平行,就稱直線與拋物線相切,這條直線是拋物線的切線.有下列命題: ①直線y=0是拋物線y= x2的切線;
②直線x=﹣2與拋物線y= x2 相切于點(diǎn)(﹣2,1);
③若直線y=x+b與拋物線y= x2相切,則相切于點(diǎn)(2,1);
④若直線y=kx﹣2與拋物線y= x2相切,則實(shí)數(shù)k=
其中正確命題的是(
A.①②④
B.①③
C.②③
D.①③④

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在△ABC中,OEABOFACOE=OF

(1)如圖,當(dāng)點(diǎn)OBC邊中點(diǎn)時(shí),試說明AB=AC;

(2)如圖,當(dāng)點(diǎn)O在△ABC內(nèi)部時(shí),且OB=OC,試說明ABAC的關(guān)系;

(3)當(dāng)點(diǎn)O在△ABC外部時(shí),且OB=OC,試判斷ABAC的關(guān)系.(畫出圖形,寫出結(jié)果即可,無須說明理由)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】花粉的質(zhì)量很小,一粒某種植物花粉的質(zhì)量約為0000037毫克,已知1克=1000毫克,那么0000000037毫克可用科學(xué)記數(shù)法表示為( 。

A.3.7×105B.3.7×106C.37×107D.3.7×108

查看答案和解析>>

同步練習(xí)冊(cè)答案