精英家教網 > 初中數學 > 題目詳情
(2009•襄陽)如圖所示,在Rt△ABC中,∠ABC=90度.將Rt△ABC繞點C順時針方向旋轉60°得到△DEC,點E在AC上,再將Rt△ABC沿著AB所在直線翻轉180°得到△ABF.連接AD.
(1)求證:四邊形AFCD是菱形;
(2)連接BE并延長交AD于G,連接CG,請問:四邊形ABCG是什么特殊平行四邊形,為什么?

【答案】分析:(1)需證明△ACD是等邊三角形、△AFC是等邊三角形,即可證明四邊形AFCD是菱形.(2)可先證四邊形ABCG是平行四邊形,再由∠ABC=90°,可證四邊形ABCG是矩形.
解答:(1)證明:Rt△DEC是由Rt△ABC繞C點旋轉60°得到,
∴AC=DC,∠ACB=∠ACD=60°,
∴△ACD是等邊三角形,
∴AD=DC=AC,(1分)
又∵Rt△ABF是由Rt△ABC沿AB所在直線翻轉180°得到,
∴AC=AF,∠ABF=∠ABC=90°,
∵∠ACB=∠ACD=60°,
∴△AFC是等邊三角形,
∴AF=FC=AC,(3分)
∴AD=DC=FC=AF,
∴四邊形AFCD是菱形.(4分)

(2)四邊形ABCG是矩形.(5分)
證明:由(1)可知:△ACD,△AFC是等邊三角形,△ACB≌△AFB,
∴∠EDC=∠BAC=∠FAC=30°,且△ABC為直角三角形,
∴BC=AC,
∵EC=CB,
∴EC=AC,
∴E為AC中點,
∴DE⊥AC,
∴AE=EC,(6分)
∵AG∥BC,
∴∠EAG=∠ECB,∠AGE=∠EBC,
∴△AEG≌△CEB,
∴AG=BC,(7分)
∴四邊形ABCG是平行四邊形,
∵∠ABC=90°,(8分)
∴四邊形ABCG是矩形.
點評:此題主要考查菱形和矩形的判定,綜合應用等邊三角形的判定、全等三角形的判定等知識是解題的關鍵.
練習冊系列答案
相關習題

科目:初中數學 來源:2009年全國中考數學試題匯編《反比例函數》(05)(解析版) 題型:解答題

(2009•襄陽)如圖所示,在直角坐標系中,點A是反比例函數y1=的圖象上一點,AB⊥x軸的正半軸于B點,C是OB的中點;一次函數y2=ax+b的圖象經過A、C兩點,并將y軸于點D(0,-2),若S△AOD=4.
(1)求反比例函數和一次函數的解析式;
(2)觀察圖象,請指出在y軸的右側,當y1>y2時,x的取值范圍.

查看答案和解析>>

科目:初中數學 來源:2010年浙江省杭州市十三中中考數學模擬試卷(3月份)(解析版) 題型:解答題

(2009•襄陽)如圖所示,在直角坐標系中,點A是反比例函數y1=的圖象上一點,AB⊥x軸的正半軸于B點,C是OB的中點;一次函數y2=ax+b的圖象經過A、C兩點,并將y軸于點D(0,-2),若S△AOD=4.
(1)求反比例函數和一次函數的解析式;
(2)觀察圖象,請指出在y軸的右側,當y1>y2時,x的取值范圍.

查看答案和解析>>

科目:初中數學 來源:2009年湖北省襄樊市中考數學試卷(解析版) 題型:解答題

(2009•襄陽)如圖所示,在直角坐標系中,點A是反比例函數y1=的圖象上一點,AB⊥x軸的正半軸于B點,C是OB的中點;一次函數y2=ax+b的圖象經過A、C兩點,并將y軸于點D(0,-2),若S△AOD=4.
(1)求反比例函數和一次函數的解析式;
(2)觀察圖象,請指出在y軸的右側,當y1>y2時,x的取值范圍.

查看答案和解析>>

科目:初中數學 來源:2010年湖南省邵陽市邵東縣省示范高中自主招生數學試卷(解析版) 題型:解答題

(2009•襄陽)如圖,在梯形ABCD中,AD∥BC,AD=2,BC=4,點M是AD的中點,△MBC是等邊三角形.
(1)求證:梯形ABCD是等腰梯形;
(2)動點P、Q分別在線段BC和MC上運動,且∠MPQ=60°保持不變.設PC=x,MQ=y,求y與x的函數關系式;
(3)在(2)中:
①當動點P、Q運動到何處時,以點P、M和點A、B、C、D中的兩個點為頂點的四邊形是平行四邊形?并指出符合條件的平行四邊形的個數;
②當y取最小值時,判斷△PQC的形狀,并說明理由.

查看答案和解析>>

科目:初中數學 來源:2009年湖北省襄樊市中考數學試卷(解析版) 題型:解答題

(2009•襄陽)如圖所示,在Rt△ABC中,∠ABC=90度.將Rt△ABC繞點C順時針方向旋轉60°得到△DEC,點E在AC上,再將Rt△ABC沿著AB所在直線翻轉180°得到△ABF.連接AD.
(1)求證:四邊形AFCD是菱形;
(2)連接BE并延長交AD于G,連接CG,請問:四邊形ABCG是什么特殊平行四邊形,為什么?

查看答案和解析>>

同步練習冊答案