如圖1 ,在平面直角坐標(biāo)系中,直線AB與軸交于點(diǎn)A,與軸交于點(diǎn)B,與直線OC:交于點(diǎn)C.
(1)若直線AB解析式為,
①求點(diǎn)C的坐標(biāo);
②求△OAC的面積.
(2)如圖2,作的平分線ON,若AB⊥ON,垂足為E,△OAC的面積為6,且OA=4,P、Q分別為線段OA、OE上的動(dòng)點(diǎn),連結(jié)AQ與PQ,試探索AQ+PQ是否存在最小值?若存在,求出這個(gè)最小值;若不存在,說明理由.
解:(1)①由題意,
解得所以C(4,4)
②把代入得,,
所以A點(diǎn)坐標(biāo)為(6,0),所以.
(2)由題意,在OC上截取OM=OP,連結(jié)MQ,
∵OP平分,∴,
又OQ=OQ,∴△POQ≌△MOQ(SAS),
∴PQ=MQ,∴AQ+PQ=AQ+MQ,
當(dāng)A、Q、M在同一直線上,且AM⊥OC時(shí),
AQ+MQ最小. 即AQ+PQ存在最小值.
∵AB⊥OP,所以
∴△AEO≌△CEO(ASA),∴OC=OA=4,
∵△OAC的面積為6,所以,
∴AQ+PQ存在最小值,最小值為3。
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在平面直角坐標(biāo)系中,直線l1y=
4
3
x
與直線l2:y=kx+b相交于點(diǎn)A,點(diǎn)A的橫精英家教網(wǎng)坐標(biāo)為3,直線l2交y軸于點(diǎn)B,且|OA|=
1
2
|OB|.
(1)試求直線l2的函數(shù)表達(dá)式;
(2)若將直線l1沿著x軸向左平移3個(gè)單位,交y軸于點(diǎn)C,交直線l2于點(diǎn)D.試求△BCD的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在平面直角坐標(biāo)系中,矩形ABOC的邊BO在x軸正半軸上,邊CO在y軸的正半軸上,且AB=2,∠AOB=30°,將矩形ABOC繞點(diǎn)O逆時(shí)針旋轉(zhuǎn)后得到矩形EFOD,且點(diǎn)A落在y軸上的E點(diǎn),點(diǎn)B,C的對應(yīng)點(diǎn)分別是點(diǎn)F,D.
(1)求F,E,D的三點(diǎn)坐標(biāo);
(2)若拋物線y=ax2+bx+c經(jīng)過點(diǎn)F,E,D,求此拋物線的解析式;
(3)在x上方的拋物線上求點(diǎn)P的坐標(biāo),使得三角形POB的面積等于矩形ABOC的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2011•河西區(qū)模擬)如圖,在平面直角坐標(biāo)系中,∠α是直線OA與x軸相交所成的銳角,且tanα=
4
3
,則直線OA的解析式為
y=
4
3
x
y=
4
3
x

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•哈爾濱)如圖,在平面直角坐標(biāo)系中,點(diǎn)O為坐標(biāo)原點(diǎn),直線y=2x+4交x軸于點(diǎn)A,交y軸于點(diǎn)B,四邊形ABCO是平行四邊形,直線y=-x+m經(jīng)過點(diǎn)C,交x軸于點(diǎn)D.
(1)求m的值;
(2)點(diǎn)P(0,t)是線段OB上的一個(gè)動(dòng)點(diǎn)(點(diǎn)P不與0,B兩點(diǎn)重合),過點(diǎn)P作x軸的平行線,分別交AB,OC,DC于點(diǎn)E,F(xiàn),G,設(shè)線段EG的長為d,求d與t之間的函數(shù)關(guān)系式(直接寫出自變量t的取值范圍);
(3)在(2)的條件下,點(diǎn)H是線段OB上一點(diǎn),連接BG交OC于點(diǎn)M,當(dāng)以O(shè)G為直徑的圓經(jīng)過點(diǎn)M時(shí),恰好使∠BFH=∠ABO,求此時(shí)t的值及點(diǎn)H的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在平面直角坐標(biāo)系中,將2個(gè)正方形并排組成矩形OABC,使點(diǎn)B落到x軸的正半軸上且OC=
5

(1)求點(diǎn)C的坐標(biāo);
(2)若拋物線y=ax2+
5
2
x
過矩形OABC的頂點(diǎn)C.
①求a的值;
②將拋物線向右平移m個(gè)單位,使平移后得到的拋物線與線段CB無交點(diǎn),求m的取值范圍.(直接寫出答案即可)

查看答案和解析>>

同步練習(xí)冊答案