【題目】已知直線y=x+7a+1與直線y=2x2a+4同時經(jīng)過點P,點Q是以M0,﹣1)為圓心,MO為半徑的圓上的一個動點,則線段PQ的最小值為(  )

A.B.C.D.

【答案】C

【解析】

先解方程組P點坐標(biāo)為(3a1,4a+2),則可確定點P為直線yx+上一動點,設(shè)直線yx+與坐標(biāo)的交點為A、B,如圖,則A(﹣,0),B0,),利用勾股定理計算出AB,過M點作MP⊥直線ABP,交MQ,此時線段PQ的值最小,證RtMBPRtABO,利用相似比計算出MP,則PQ,即線段PQ的最小值為

解方程組

P點坐標(biāo)為(3a1,4a+2),

設(shè)x=3a1,y=4a+2,

yx+

即點P為直線yx+上一動點,

設(shè)直線yx+與坐標(biāo)的交點為A、B,如圖,則A(﹣,0),B0,),

AB=

M點作MP直線ABP,交MQ,此時線段PQ的值最。

∵∠MBP=∠ABO

∴Rt△MBP∽Rt△ABO,

MPOA=BMAB,即MP=,

MP=,PQ=1=,

即線段PQ的最小值為

故選:C

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,過矩形的對角線的中點,交邊于點,交邊于點,分別連接、.若,則的長為( )

A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,直線軸交于點,軸交于點,拋物線經(jīng)過,兩點,與軸的另一交點為

1)求拋物線的解析式;

2為拋物線上一點,直線軸交于點,當(dāng)時,求點的坐標(biāo);

3)在直線下方的拋物線上是否存在點,使得,如果存在這樣的點,請求出點的坐標(biāo),如果不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在蘭州市開展的體育、藝術(shù)2+1”活動中,某校根據(jù)實際情況,決定主要開設(shè)A:乒

乓球,B:籃球,C:跑步,D:跳繩這四種運動項目.為了解學(xué)生喜歡哪一種項目,隨機抽取了部分學(xué)生進(jìn)行調(diào)查,并將調(diào)查結(jié)果繪制成如下的條形統(tǒng)計圖和扇形統(tǒng)計圖.請你結(jié)合圖中信息解答下列問題:

1)樣本中喜歡B項目的人數(shù)百分比是    ,其所在扇形統(tǒng)計圖中的圓心角的度數(shù)是    

2)把條形統(tǒng)計圖補充完整;

3)已知該校有1000人,根據(jù)樣本估計全校喜歡乒乓球的人數(shù)是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】建造一個面積為130m2的長方形養(yǎng)雞場,雞場的一邊靠墻,墻長為a米,另三邊用竹籬笆圍成,如果籬笆總長為33米.

1)求養(yǎng)雞場的長與寬各為多少米?

2)若10a18,題中的解的情況如何?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,△ABC的點AC在⊙O上,⊙OAB相交于點D,連接CD,∠A30°,DC

1)求圓心O到弦DC的距離;

2)若∠ACB+ADC180°,求證:BC是⊙O的切線.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】是菱形邊上一點,點的延長線上

1)如圖,若,,求的度數(shù);

2)如圖,若的中點,,求的值;

3)如圖,若,點是線段的中點,求證:

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】“樹德之聲”結(jié)束后,王老師和李老師整理了所有參賽選手的比賽成績(單位:分),繪制成如圖頻數(shù)直方圖和扇形統(tǒng)計圖:

1)求本次比賽參賽選手總?cè)藬?shù),并補全頻數(shù)直方圖;

2)求扇形統(tǒng)計圖中扇形D的圓心角度數(shù);

3)成績在D區(qū)域的選手中,男生比女生多一人,從中隨機抽取兩人,求恰好選中一名男生和一名女生的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖 ,已知ABC 中,C90°ACBC,將ABC 繞點 A 順時針方向旋轉(zhuǎn) 60°得到A′B′C′的位置,連接 C′B,則 C′B 的長為 ( )

A.2B.C.D.1

查看答案和解析>>

同步練習(xí)冊答案