已知拋物線與x軸交于A、B兩點(diǎn).
(1)求證:拋物線的對(duì)稱(chēng)軸在y軸的左側(cè);
(2)若(O為坐標(biāo)原點(diǎn)),求拋物線的解析式;
(3)設(shè)拋物線與y軸交于點(diǎn)C,若△ABC是直角三角形.求△ABC的面積.
【答案】分析:(1)證明拋物線的對(duì)稱(chēng)軸<0即可證明拋物線的對(duì)稱(chēng)軸在y軸的左側(cè);
(2)根據(jù)題中已知條件求出m的值,進(jìn)而求得拋物線的解析式;
(3)先設(shè)出C點(diǎn)坐標(biāo),根據(jù)的x1與x2關(guān)系求出m值,進(jìn)而可求得△ABC的面積.
解答:(1)證明:∵m>0,
∴x=-=-<0,
∴拋物線的對(duì)稱(chēng)軸在y軸的左側(cè);

(2)解:設(shè)拋物線與x軸交點(diǎn)為A(x1,0),B(x2,0),
則x1+x2=-m<0,x1•x2=-m2<0,
∴x1與x2異號(hào),
又∵=>0,
∴OA>OB,
由(1)知:拋物線的對(duì)稱(chēng)軸在y軸的左側(cè),
∴x1<0,x2>0,
∴OA=|x1|=-x1
OB=x2,
代入得:=,
=,
從而,
解得m=2,
∴拋物線的解析式為y=x2+2x-3;

(3)解:當(dāng)x=0時(shí),y=-m2
∴點(diǎn)C(0,-m2),
∵△ABC是直角三角形,
∴AB2=AC2+BC2
∴(x1-x22=x12+(-m22+x22+(-m22
∴-2x1•x2=m4
∴-2(-m2)=m4,
解得m=,
∴S△ABC=×|AB|•|OC|=|x1-x2|•=×2m×m2=
點(diǎn)評(píng):本題是二次函數(shù)的綜合題,其中涉及到的知識(shí)點(diǎn)有拋物線的公式的求法和三角形面積的求法等知識(shí)點(diǎn),是各地中考的熱點(diǎn)和難點(diǎn),解題時(shí)注意數(shù)形結(jié)合數(shù)學(xué)思想的運(yùn)用,同學(xué)們要加強(qiáng)訓(xùn)練,屬于中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,已知拋物線與x軸交于A(-1,0)、E(3,0)兩點(diǎn),與y軸交于點(diǎn)B(0,3).
(1)求拋物線的解析式;
(2)設(shè)拋物線頂點(diǎn)為D,求四邊形AEDB的面積;
(3)△AOB與△DBE是否相似?如果相似,請(qǐng)給以證明;如果不相似,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,已知拋物線與x軸交于點(diǎn)A(-2,0),B(4,0),與y軸交于點(diǎn)C(0,8).
(1)求拋物線的解析式及其頂點(diǎn)D的坐標(biāo);
(2)設(shè)直線CD交x軸于點(diǎn)E.在線段OB的垂直平分線上是否存在點(diǎn)P,使得點(diǎn)P到直線CD的距離等于點(diǎn)P到原點(diǎn)O的距離?如果存在,求出點(diǎn)P的坐標(biāo);如果不存在,請(qǐng)說(shuō)明理由;
(3)過(guò)點(diǎn)B作x軸的垂線,交直線CD于點(diǎn)F,將拋物線沿其對(duì)稱(chēng)軸平移,使拋物線與線段EF總有公共點(diǎn).試探究:拋物線向上最多可平移多少個(gè)單位長(zhǎng)度?向下最多可平移多少個(gè)單位長(zhǎng)度?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

已知拋物線與x軸交于A(-3,0),B(1,0)兩點(diǎn),與y軸交于點(diǎn)C(0,-3),拋物線頂點(diǎn)為D,連接AD,AC,CD.
(1)求該拋物線的解析式;
(2)△ACD與△COB是否相似?如果相似,請(qǐng)給以證明;如果不相似,請(qǐng)說(shuō)明理由;
(3)拋物線的對(duì)稱(chēng)軸與線段AC交于點(diǎn)E,求△CED的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,已知拋物線與x軸交于A(-1,0)、B(4,0)兩點(diǎn),與y軸交于點(diǎn)C(0,3).
(1)求拋物線的解析式;
(2)點(diǎn)P在x軸下方的拋物線上,且△PAB的面積等于△ABC的面積,求點(diǎn)P的坐標(biāo);
(3)點(diǎn)Q是直線BC上的一個(gè)動(dòng)點(diǎn),若△QOB為等腰三角形,請(qǐng)寫(xiě)出此時(shí)點(diǎn)Q的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2012•岳陽(yáng)一模)如圖,已知拋物線與x軸交于A(-4,0)和B(1,0)兩點(diǎn),與y軸交于C(0,-2)點(diǎn).
(1)求此拋物線的解析式;
(2)設(shè)G是線段BC上的動(dòng)點(diǎn),作GH∥AC交AB于H,連接CH,當(dāng)△BGH的面積是△CGH面積的3倍時(shí),求H點(diǎn)的坐標(biāo);
(3)若M為拋物線上A、C兩點(diǎn)間的一個(gè)動(dòng)點(diǎn),過(guò)M作y軸的平行線,交AC于N,當(dāng)M點(diǎn)運(yùn)動(dòng)到什么位置時(shí),線段MN的值最大,并求此時(shí)M點(diǎn)的坐標(biāo).

查看答案和解析>>

同步練習(xí)冊(cè)答案