【題目】如圖,四邊形ABCD是正方形,△ADF按順時(shí)針方向旋轉(zhuǎn)一定角度后得到△ABE,若AF=4.AB=7.
(1)旋轉(zhuǎn)中心為;旋轉(zhuǎn)角度為
(2)求DE的長(zhǎng)度;
(3)指出BE與DF的關(guān)系如何?并說明理由.

【答案】
(1)點(diǎn)A;90°
(2)解:∵△ADF按順時(shí)針方向旋轉(zhuǎn)一定角度后得到△ABE,

∴AE=AF=4,AD=AB=7,

∴DE=AD﹣AE=7﹣4=3


(3)解:BE、DF的關(guān)系為:BE=DF,BE⊥DF.理由如下:

∵△ADF按順時(shí)針方向旋轉(zhuǎn)一定角度后得到△ABE,

∴△ABE≌△ADF,

∴BE=DF,∠ABE=∠ADF,

∵∠ADF+∠F=180°﹣90°=90°,

∴∠ABE+∠F=90°,

∴BE⊥DF,

∴BE、DF的關(guān)系為:BE=DF,BE⊥DF


【解析】解:(1)旋轉(zhuǎn)中心為點(diǎn)A,旋轉(zhuǎn)角為∠BAD=90°;
【考點(diǎn)精析】解答此題的關(guān)鍵在于理解正方形的性質(zhì)的相關(guān)知識(shí),掌握正方形四個(gè)角都是直角,四條邊都相等;正方形的兩條對(duì)角線相等,并且互相垂直平分,每條對(duì)角線平分一組對(duì)角;正方形的一條對(duì)角線把正方形分成兩個(gè)全等的等腰直角三角形;正方形的對(duì)角線與邊的夾角是45o;正方形的兩條對(duì)角線把這個(gè)正方形分成四個(gè)全等的等腰直角三角形,以及對(duì)旋轉(zhuǎn)的性質(zhì)的理解,了解①旋轉(zhuǎn)后對(duì)應(yīng)的線段長(zhǎng)短不變,旋轉(zhuǎn)角度大小不變;②旋轉(zhuǎn)后對(duì)應(yīng)的點(diǎn)到旋轉(zhuǎn)到旋轉(zhuǎn)中心的距離不變;③旋轉(zhuǎn)后物體或圖形不變,只是位置變了.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】正方形ABCD中,EAC上一點(diǎn),EFAB , EGAD , AB=6,AEEC=2:1.求四邊形AFEG的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,Rt△OAB的頂點(diǎn)A(﹣2,4)在拋物線y=ax2上,將Rt△OAB繞點(diǎn)O順時(shí)針旋轉(zhuǎn)90°,得到△OCD,邊CD與該拋物線交于點(diǎn)P,則點(diǎn)P的坐標(biāo)為( )

A.( ,
B.(2,2)
C.( ,2)
D.(2,

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,△ABC繞點(diǎn)A順時(shí)針旋轉(zhuǎn)45°得到△AB′C′,若∠BAC=90°,AB=AC= ,則圖中陰影部分的面積等于

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在Rt△ABC中,∠ACB=90°,∠A=40°,以直角頂點(diǎn)C為旋轉(zhuǎn)中心,將△ABC旋轉(zhuǎn)到△A′B′C的位置,其中A′、B′分別是A、B的對(duì)應(yīng)點(diǎn),且點(diǎn)B在斜邊A′B′上,直角邊CA′交AB于D,則旋轉(zhuǎn)角等于(
A.70°
B.80°
C.60°
D.50°

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在菱形ABCD中,∠BAD=80°,AB的垂直平分線交對(duì)角線AC于點(diǎn)F,點(diǎn)E為垂足,連接DF,則∠CDF為(
A.80°
B.70°
C.65°
D.60°

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,ABCD為平行四邊形,DFEC和BCGH為正方形.求證:AC⊥EG.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖①,先把一矩形ABCD紙片上下對(duì)折,設(shè)折痕為MN;如圖②,再把點(diǎn)B 疊在折痕線MN上,得到Rt△ABE.過B點(diǎn)作PQ⊥AD,分別交BC、AD于點(diǎn)P、Q.

(1)求證:△PBE∽△QAB;
(2)在圖②中,EB是否平分∠AEC?請(qǐng)說明理由;
(3)在(1)(2)的條件下,若AB=4,求PE的長(zhǎng)度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點(diǎn)A的坐標(biāo)為(0,1),點(diǎn)B是x軸正半軸上的一動(dòng)點(diǎn),以AB為邊作等腰直角△ABC,使∠BAC=90°,取BC的中點(diǎn)P.當(dāng)點(diǎn)B從點(diǎn)O向x軸正半軸移動(dòng)到點(diǎn)M(2,0)時(shí),則點(diǎn)P移動(dòng)的路線長(zhǎng)為

查看答案和解析>>

同步練習(xí)冊(cè)答案