(2011•古冶區(qū)一模)如圖,在△ABC中,D是BC邊上的一點,E是AD的中點,過A點作BC的平行線交CE的延長線于點F,且AF=BD,連接BF.
(1)求證:BD=CD;
(2)如果AB=AC,試判斷四邊形AFBD的形狀,并證明你的結(jié)論.

【答案】分析:(1)先由AF∥BC,利用平行線的性質(zhì)可證∠AFE=∠DCE,而E是AD中點,那么AE=DE,∠AEF=∠DEC,利用AAS可證△AEF≌△DEC,那么有AF=DC,又AF=BD,從而有BD=CD;
(2)四邊形AFBD是矩形.由于AF平行等于BD,易得四邊形AFBD是平行四邊形,又AB=AC,BD=CD,利用等腰三角形三線合一定理,可知AD⊥BC,即∠ADB=90°,那么可證四邊形AFBD是矩形.
解答:證明:
(1)∵AF∥BC,
∴∠AFE=∠DCE,
∵E是AD的中點,
∴AE=DE,

∴△AEF≌△DEC,
∴AF=DC,
∵AF=BD,
∴BD=CD;

(2)四邊形AFBD是矩形.
∵AB=AC,D是BC的中點,
∴AD⊥BC,
∴∠ADB=90°
∵AF=BD,
∵過A點作BC的平行線交CE的延長線于點F,即AF∥BC,
∴四邊形AFBD是平行四邊形,
又∵∠ADB=90°,
∴四邊形AFBD是矩形.
點評:本題利用了平行線的性質(zhì)、全等三角形的判定和性質(zhì)、等量代換、平行四邊形的判定、等腰三角形三線合一定理、矩形的判定等知識.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:2011年江蘇省常州市中考數(shù)學(xué)模擬試卷(解析版) 題型:解答題

(2011•古冶區(qū)一模)如圖,在單位長度為1的正方形網(wǎng)格中,一段圓弧經(jīng)過網(wǎng)格的交點A、B、C.
(1)請完成如下操作:①以點O為原點、豎直和水平方向為軸、網(wǎng)格邊長為單位長,建立平面直角坐標系;
②根據(jù)圖形提供的信息,標出該圓弧所在圓的圓心D,并連接AD、CD.
(2)請在(1)的基礎(chǔ)上,完成下列填空:
①寫出點的坐標:C______;D(______);
②⊙D的半徑=______

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2011年江蘇省常州市中考數(shù)學(xué)模擬試卷(解析版) 題型:解答題

(2011•古冶區(qū)一模)如圖,在△ABC中,D是BC邊上的一點,E是AD的中點,過A點作BC的平行線交CE的延長線于點F,且AF=BD,連接BF.
(1)求證:BD=CD;
(2)如果AB=AC,試判斷四邊形AFBD的形狀,并證明你的結(jié)論.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2010年中考數(shù)學(xué)模擬試卷3(解析版) 題型:選擇題

(2011•古冶區(qū)一模)已知m≠0,下列計算正確的是( )
A.m2+m3=m5
B.m2•m3=m6
C.m3÷m2=m
D.(m23=m5

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2010年中考復(fù)習(xí)針對性訓(xùn)練 計算類題(解析版) 題型:解答題

(2011•古冶區(qū)一模)如圖,在單位長度為1的正方形網(wǎng)格中,一段圓弧經(jīng)過網(wǎng)格的交點A、B、C.
(1)請完成如下操作:①以點O為原點、豎直和水平方向為軸、網(wǎng)格邊長為單位長,建立平面直角坐標系;
②根據(jù)圖形提供的信息,標出該圓弧所在圓的圓心D,并連接AD、CD.
(2)請在(1)的基礎(chǔ)上,完成下列填空:
①寫出點的坐標:C______;D(______);
②⊙D的半徑=______

查看答案和解析>>

同步練習(xí)冊答案