如圖,已知AB是⊙O的直徑,點(diǎn)C、D在⊙O上,點(diǎn)E在⊙O外,∠EAC=∠D=60°.

(1)求∠ABC的度數(shù);(本題2分)
(2)求證:AE是⊙O的切線;(本題2分)
(3)當(dāng)BC=4時(shí),求劣弧AC的長(zhǎng).(本題3分)
(1)60°(2)見(jiàn)解析(3)

試題分析:解:(1)∵∠ABC與∠D都是弧AC所對(duì)的圓周角,
∴∠ABC=∠D=60°; 
(2)∵AB是⊙O的直徑,
∴∠ACB=90°.
∴∠BAC=30°,
∴∠BAE=∠BAC+∠EAC=30°+60°=90°,
即BA⊥AE,
∴AE是⊙O的切線;
(3)連接OC,
∵OB=OC,∠ABC=60°,
∴△OBC是等邊三角形,
∴OB=BC=4,∠BOC=60°,
∴∠AOC=120°,
∴劣弧AC的長(zhǎng)為
點(diǎn)評(píng):此類試題屬于難度一般的試題,考生在解答此類試題時(shí)一定要垂徑定理、切線定理和圓的基本知識(shí)熟練把握
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(6分)已知:如圖,在△ABC中,AB為⊙O的直徑,BC,AC分別交⊙O于D、E兩點(diǎn), ,連接AD,求證:△ABD≌△ACD.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

如圖,在以O(shè)為圓心的兩個(gè)同心圓中,大圓的弦AB與小圓相切于點(diǎn)C,若弦AB的長(zhǎng)為8cm.則圓環(huán)的面積為_(kāi)_______cm2
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

如圖,⊙O是△ABC的外接圓,∠A=50°,則∠BOC的度數(shù)為
A.40°B.50° C.80°D.100°

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,AB是⊙O的直徑,BC是⊙O的切線,D是⊙O上一點(diǎn),且AD∥OC

(1)求證:△ADB∽△OBC;
(2)若AB=2,BC=,求AD的長(zhǎng)(結(jié)果保留根號(hào)).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

如圖,A、B、C為⊙O上三點(diǎn),∠ACB=25º,則∠BAO的度數(shù)為      .

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

如圖,PA、PB分別與⊙O相切于點(diǎn)A、B,⊙O的切線EF分別交PA、PB于點(diǎn)E、F,切點(diǎn)C在弧AB上,若PA長(zhǎng)為2,則△PEF的周長(zhǎng)是_           _

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

如圖,已知△ABC為等腰直角三角形,∠BAC=90°,AC=2,以點(diǎn)C為圓心,1為半徑作圓,點(diǎn)P為⊙C上一動(dòng)點(diǎn),連結(jié)AP,并繞點(diǎn)A順時(shí)針旋轉(zhuǎn)90°得到AP′,連結(jié)CP′,則CP′的取值范圍是__________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

⊙O的半徑為6,一條弦長(zhǎng)為6,這條弦所對(duì)的圓周角為      度。

查看答案和解析>>

同步練習(xí)冊(cè)答案