例:解方程組
2001x+1999y=8001      ①
1999x+2001y=7999      ②

解:由①+②得:4000x+4000y=16000
即x+y=4               ③
由①-②得2x-2y=2
即x-y=1               ④
[歸納]:對(duì)于大系數(shù)的二元一次方程組,當(dāng)用代入法和加減法解非常麻煩,可以通過(guò)觀察各項(xiàng)系數(shù)的特點(diǎn),尋求特殊解法:
結(jié)合例子:模仿解下列方程組
253x+247y=777       ①
247x+253y=723       ②
分析:將方程組中的兩方程相加、相減,得到新的方程組,求出方程組的解即可得到原方程組的解.
解答:解:①+②得:500x+500y=1500,即x+y=3③,
①-②得:6x-6y=54,即x-y=9④,
③+④得:2x=12,
解得:x=6,
③-④得:2y=-6,
解得:y=-3,
則原方程組的解為
x=6
y=-3
點(diǎn)評(píng):此題考查了解二元一次方程組,弄清題中的閱讀材料是解本題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

解方程組:
2001x-2003y=1999
2000x-2002y=1998

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

例:解方程組數(shù)學(xué)公式
解:由①+②得:4000x+4000y=16000
即x+y=4        ③
由①-②得2x-2y=2
即x-y=1        ④
[歸納]:對(duì)于大系數(shù)的二元一次方程組,當(dāng)用代入法和加減法解非常麻煩,可以通過(guò)觀察各項(xiàng)系數(shù)的特點(diǎn),尋求特殊解法:
結(jié)合例子:模仿解下列方程組數(shù)學(xué)公式

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

檢驗(yàn)方程組的解時(shí),必須將求得的未知數(shù)的值代入方程組中的每一個(gè)方程.
例1:解方程組數(shù)學(xué)公式
思路分析:本例這兩個(gè)方程中①較簡(jiǎn)單,且x、y的系數(shù)均為1,故可把①變形,把x用y表示,或把y用x來(lái)表示皆可,然后將其代入②,消去一個(gè)未知數(shù),化成一元一次方程,進(jìn)而再求出方程組的解.
解:把①變形為y=4-x、
把③代入②得:數(shù)學(xué)公式-數(shù)學(xué)公式=1
數(shù)學(xué)公式-數(shù)學(xué)公式=1,數(shù)學(xué)公式=數(shù)學(xué)公式-1,數(shù)學(xué)公式=數(shù)學(xué)公式
∴x=數(shù)學(xué)公式
把x=數(shù)學(xué)公式代入③得y=4-數(shù)學(xué)公式=3數(shù)學(xué)公式
所以原方程的解是數(shù)學(xué)公式
若想知道解的是否正確,可作如下檢驗(yàn):
檢驗(yàn):把x=數(shù)學(xué)公式,y=3數(shù)學(xué)公式代入①得,左邊=x+y=數(shù)學(xué)公式+3數(shù)學(xué)公式=4,右邊=4.
所以左邊=右邊.
再把x=數(shù)學(xué)公式,y=3數(shù)學(xué)公式代入②得
左邊數(shù)學(xué)公式-數(shù)學(xué)公式=數(shù)學(xué)公式-數(shù)學(xué)公式=數(shù)學(xué)公式-數(shù)學(xué)公式=1,右邊=1.
所以左邊=右邊.
所以數(shù)學(xué)公式是原方程組的解.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

例:解方程組
2001x+1999y=8001      ①
1999x+2001y=7999      ②

由①+②得:4000x+4000y=16000
即x+y=4               ③
由①-②得2x-2y=2
即x-y=1               ④
[歸納]:對(duì)于大系數(shù)的二元一次方程組,當(dāng)用代入法和加減法解非常麻煩,可以通過(guò)觀察各項(xiàng)系數(shù)的特點(diǎn),尋求特殊解法:
結(jié)合例子:模仿解下列方程組
253x+247y=777       ①
247x+253y=723       ②

查看答案和解析>>

同步練習(xí)冊(cè)答案