如果x2+8x+k可運(yùn)用完全平方公式進(jìn)行因式分解,則k的值是


  1. A.
    8
  2. B.
    16
  3. C.
    32
  4. D.
    64
B
分析:先根據(jù)乘積二倍項(xiàng)確定出這兩個(gè)數(shù)是x和4,再根據(jù)完全平方公式把4平方即可.
解答:∵8x=2×4•x,
∴k=42=16.
故選B.
點(diǎn)評(píng):本題考查了完全平方式的結(jié)構(gòu)特點(diǎn),根據(jù)乘積二倍項(xiàng)確定出這兩個(gè)數(shù)是解題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:閱讀理解

閱讀理解題:一次數(shù)學(xué)興趣小組的活動(dòng)課上,師生有下面一段對(duì)話,請(qǐng)你閱讀完后再解答下面問題:
老師:同學(xué)們,今天我們來探索如下方程的解法:(x2-x)2-8(x2-x)+12=0.
學(xué)生甲:老師,先去括號(hào),再合并同類項(xiàng),行嗎?
老師:這樣,原方程可整理為x4-2x3-7x2+8x+12=0,次數(shù)變成了4次,用現(xiàn)有的知識(shí)無法解答.同學(xué)們?cè)儆^察觀察,看看這個(gè)方程有什么特點(diǎn)?
學(xué)生乙:我發(fā)現(xiàn)方程中x2-x是整體出現(xiàn)的,最好不要去括號(hào)!
老師:很好.如果我們把x2-x看成一個(gè)整體,用y來表示,那么原方程就變成y2-8y+12=0.
全體同學(xué):咦,這不是我們學(xué)過的一元二次方程嗎?
老師:大家真會(huì)觀察和思考,太棒了!顯然一元二次方程y2-8y+12=0的解是y1=6,y2=2,就有x2-x=6或x2-x=2.
學(xué)生丙:對(duì)啦,再解這兩個(gè)方程,可得原方程的根x1=3,x2=-2,x3=2,x4=-1,嗬,有這么多根啊.
老師:同學(xué)們,通常我們把這種方法叫做換元法.在這里,使用它最大的妙處在于降低了原方程的次數(shù),這是一種很重要的轉(zhuǎn)化方法.
全體同學(xué):OK!換元法真神奇!
現(xiàn)在,請(qǐng)你用換元法解下列分式方程(
x
x-1
)2-5(
x
x-1
)-6=0

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

7、如果x2+8x+k可運(yùn)用完全平方公式進(jìn)行因式分解,則k的值是( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2010-2011學(xué)年山東省濰坊市諸城市繁華中學(xué)九年級(jí)(上)月考數(shù)學(xué)試卷(10月份)(解析版) 題型:解答題

閱讀理解題:一次數(shù)學(xué)興趣小組的活動(dòng)課上,師生有下面一段對(duì)話,請(qǐng)你閱讀完后再解答下面問題:
老師:同學(xué)們,今天我們來探索如下方程的解法:(x2-x)2-8(x2-x)+12=0.
學(xué)生甲:老師,先去括號(hào),再合并同類項(xiàng),行嗎?
老師:這樣,原方程可整理為x4-2x3-7x2+8x+12=0,次數(shù)變成了4次,用現(xiàn)有的知識(shí)無法解答.同學(xué)們?cè)儆^察觀察,看看這個(gè)方程有什么特點(diǎn)?
學(xué)生乙:我發(fā)現(xiàn)方程中x2-x是整體出現(xiàn)的,最好不要去括號(hào)!
老師:很好.如果我們把x2-x看成一個(gè)整體,用y來表示,那么原方程就變成y2-8y+12=0.
全體同學(xué):咦,這不是我們學(xué)過的一元二次方程嗎?
老師:大家真會(huì)觀察和思考,太棒了!顯然一元二次方程y2-8y+12=0的解是y1=6,y2=2,就有x2-x=6或x2-x=2.
學(xué)生丙:對(duì)啦,再解這兩個(gè)方程,可得原方程的根x1=3,x2=-2,x3=2,x4=-1,嗬,有這么多根。
老師:同學(xué)們,通常我們把這種方法叫做換元法.在這里,使用它最大的妙處在于降低了原方程的次數(shù),這是一種很重要的轉(zhuǎn)化方法.
全體同學(xué):OK!換元法真神奇!
現(xiàn)在,請(qǐng)你用換元法解下列分式方程

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

如果x2+8x+k可運(yùn)用完全平方公式進(jìn)行因式分解,則k的值是( 。
A.8B.16C.32D.64

查看答案和解析>>

同步練習(xí)冊(cè)答案