【題目】如圖,正方形OABC的邊OA,OC在坐標軸上,點B的坐標為(-4,4).點P從點A出發(fā),以每秒1個單位長度的速度沿x軸向點O運動;點Q從點O同時出發(fā),以相同的速度沿x軸的正方向運動,規(guī)定點P到達點O時,點Q也停止運動.連接BP,過P點作BP的垂線,與過點Q平行于y軸的直線l相交于點D.BD與y軸交于點E,連接PE.設(shè)點P運動的時間為t(s).
(1)寫出∠PBD的度數(shù)和點D的坐標(點D的坐標用t表示);
(2)探索△POE周長是否隨時間t的變化而變化,若變化,說明理由;若不變,試求這個定值.
(3)當t為何值時,△PBE為等腰三角形?
【答案】(1)45°,(t,t).(2)△POE周長是定值,該定值為8.(3)當t為4秒或(4-4)秒時,△PBE為等腰三角形.
【解析】
試題(1)易證△BAP≌△PQD,從而得到DQ=AP=t,從而可以求出∠PBD的度數(shù)和點D的坐標;
(2)由于∠EBP=45°,故圖1是以正方形為背景的一個基本圖形,容易得到EP=AP+CE.容易得到△POE周長等于AO+CO=8,從而解決問題;
(3)EP=AP+CE,由于△PBE底邊不定,故分三種情況討論,借助于三角形全等及勾股定理進行求解,然后結(jié)合條件進行取舍,最終確定符合要求的t值.
試題解析:(1)如圖1,
由題可得:AP=OQ=1×t=t(秒)
∴AO=PQ.
∵四邊形OABC是正方形,
∴AO=AB=BC=OC,
∠BAO=∠AOC=∠OCB=∠ABC=90°.
∵DP⊥BP,
∴∠BPD=90°.
∴∠BPA=90°-∠DPQ=∠PDQ.
∵AO=PQ,AO=AB,
∴AB=PQ.
在△BAP和△PQD中,
∴△BAP≌△PQD(AAS).
∴AP=QD,BP=PD.
∵∠BPD=90°,BP=PD,
∴∠PBD=∠PDB=45°.
∵AP=t,
∴DQ=t.
∴點D坐標為(t,t).
(2)∵∠EBP=45°
∴由圖1可以得到EP=CE+AP,
∴OP+PE+OE=OP+AP+CE+OE
=AO+CO
=4+4
=8.
∴△POE周長是定值,該定值為8.
(3)①若PB=PE,
由△PAB≌△DQP得PB=PD,
顯然PB≠PE,
∴這種情況應(yīng)舍去.
②若EB=EP,
則∠PBE=∠BPE=45°.
∴∠BEP=90°.
∴∠PEO=90°-∠BEC=∠EBC.
在△POE和△ECB中,
∴△POE≌△ECB(AAS).
∴OE=CB=OC.
∴點E與點C重合(EC=0).
∴點P與點O重合(PO=0).
∵點B(-4,4),
∴AO=CO=4.
此時t=AP=AO=4.
③若BP=BE,
在Rt△BAP和Rt△BCE中,
∴Rt△BAP≌Rt△BCE(HL).
∴AP=CE.
∵AP=t,
∴CE=t.
∴PO=EO=4-t.
∵∠POE=90°,
∴PE=.
延長OA到點F,使得AF=CE,連接BF,如圖2所示.
在△FAB和△ECB中,
∴△FAB≌△ECB.
∴FB=EB,∠FBA=∠EBC.
∵∠EBP=45°,∠ABC=90°,
∴∠ABP+∠EBC=45°.
∴∠FBP=∠FBA+∠ABP
=∠EBC+∠ABP=45°.
∴∠FBP=∠EBP.
在△FBP和△EBP中,
∴△FBP≌△EBP(SAS).
∴FP=EP.
∴EP=FP=FA+AP
=CE+AP.
∴EP=t+t=2t.
∴(4-t)=2t.
解得:t=4-4
∴當t為4秒或(4-4)秒時,△PBE為等腰三角形.
科目:初中數(shù)學 來源: 題型:
【題目】已知,直線y=2x-2與x軸交于點A,與y軸交于點B.
(1)如圖①,點A的坐標為_______,點B的坐標為_______;
(2)如圖②,點C是直線AB上不同于點B的點,且CA=AB.
①求點C的坐標;
②過動點P(m,0)且垂直與x軸的直線與直線AB交于點E,若點E不在線段BC上,則m的取值范圍是_______;
(3)若∠ABN=45,求直線BN的解析式.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某工程交由甲、乙兩個工程隊來完成,已知甲工程隊單獨完成需要60天,乙工程隊單獨完成需要40天
(1)若甲工程隊先做30天后,剩余由乙工程隊來完成,還需要用時 天
(2)若甲工程隊先做20天,乙工程隊再參加,兩個工程隊一起來完成剩余的工程,求共需多少天完成該工程任務(wù)?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】下列說法錯誤的有( )
①有理數(shù)包括正有理數(shù)和負有理數(shù); ②絕對值等于它本身的數(shù)是非負數(shù);③若|b|=|﹣5|,則b=-5 ; ④當b=2時,5﹣|2b﹣4|有最小值是5;⑤若、互為相反數(shù),則;⑥是關(guān)于、的六次三項式.
A.2個B.3個C.4個D.5個
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在□ABCD中,CEAD于點E,且CB=CE,點F為CD邊上的一點,CB=CF,連接BF交CE于點G.
(1)若,CF=,求CG的長;
(2)求證:AB=ED+CG
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】下列命題:①若a<1,則(a﹣1)=﹣;②圓是中心對稱圖形又是軸對稱圖形;③的算術(shù)平方根是4;④如果方程ax2+2x+1=0有實數(shù)根,則實數(shù)a≤1.其中正確的命題個數(shù)是( 。
A. 1個 B. 2個 C. 3個 D. 4個
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】為了深化課程改革,某校積極開展校本課程建設(shè),計劃成立“文學鑒賞”、“國際象棋”、“音樂舞蹈”和“書法”等說個社團,要求每位學生都自主選擇其中一個社團,為此,隨機調(diào)查了本校部分學生選擇社團的意向.并將調(diào)查結(jié)果繪制成如下統(tǒng)計圖表(不完整):
選擇意向 | 文學鑒賞 | 國際象棋 | 音樂舞蹈 | 書法 | 其他 |
所占百分比 | a | 20% | b | 10% | 5% |
根據(jù)統(tǒng)計圖表的信息,解答下列問題:
(1)求本次抽樣調(diào)查的學生總?cè)藬?shù)及a、b的值;
(2)將條形統(tǒng)計圖補充完整;
(3)若該校共有1200名學生,試估計全校選擇“音樂舞蹈”社團的學生人數(shù).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,矩形OABC的頂點A,C分別在x軸和y軸上,點B的坐標為(2,3)。雙曲線的圖像經(jīng)過BC的中點D,且與AB交于點E,連接DE。
(1)求k的值及點E的坐標;
(2)若點F是邊上一點,且△FBC∽△DEB,求直線FB的解析式
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在圓中,、是圓的半徑,點在劣弧弧上,,,∥,聯(lián)結(jié).
(1)如圖1,求證:平分;
(2)點在弦的延長線上,聯(lián)結(jié),如果△是直角三角形,請你在如圖2中畫出
點的位置并求的長;
(3)如圖3,點在弦上,與點不重合,聯(lián)結(jié)與弦交于點,設(shè)點與點的
距離為,△的面積為,求與的函數(shù)關(guān)系式,并寫出自變量的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com