【題目】某市城區(qū)新建了一“中央商場(chǎng)”,該商場(chǎng)的第4層共分隔成了27間商鋪對(duì)外招租.據(jù)預(yù)測(cè):當(dāng)每間的年租金定為8萬(wàn)元時(shí),可全部租出;每間的年租金每增加0.5萬(wàn)元,少租出商鋪1間.該公司要為租出的商鋪每間每年交各種費(fèi)用1萬(wàn)元,未租出的商鋪改作其他服務(wù)(休閑)用途,每間每年需費(fèi)用5 000元.
(1)當(dāng)每間商鋪的年租金定為10萬(wàn)元時(shí),能租出_______間;
(2)當(dāng)該商場(chǎng)第4層每間商鋪的年租金定為多少萬(wàn)元時(shí),該層的年收益(收益=租金-各種費(fèi)用)為199萬(wàn)元?
(3)當(dāng)每間商鋪的年租金定為_______萬(wàn)元時(shí), 該“中央商場(chǎng)”的第4層年收益最大,最大收益為_____.
【答案】(1)23;(2)9萬(wàn)元或13萬(wàn)元;(3)11,207
【解析】試題(1)根據(jù)每增加0.5萬(wàn)元,少租出1間,通過(guò)計(jì)算即可得;
(2)設(shè)每間商鋪的年租金增加萬(wàn)元,根據(jù)收益=租金-各種費(fèi)用,列出方程即可得;
(3)設(shè)每間商鋪的年租金增加萬(wàn)元,年收益為w萬(wàn)元,根據(jù)收益=租金-各種費(fèi)用,列出函數(shù)關(guān)系式,根據(jù)函數(shù)的性質(zhì)即可得.
試題解析:(1)(1) 27- =23(間),故答案為:23;
(2)設(shè)每間商鋪的年租金增加萬(wàn)元,則
, ,
∴,
∴8+1=9或8+5=13,
∴ 每間商鋪的年租金定為9萬(wàn)元或13萬(wàn)元;
(3)設(shè)每間商鋪的年租金增加萬(wàn)元,年收益為w萬(wàn)元,則有
w==-2(x-3)2+207,
∵-2<0,∴當(dāng)x=3時(shí),w有最大值為207,即定價(jià)為3+8=11萬(wàn)元時(shí),有最大收益為207萬(wàn)元,
故答案為:11,207.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,點(diǎn)B、E分別在AC、DF上,AF分別交BD、CE于點(diǎn)M、N,∠A=∠F,∠1=∠2.
(1)求證:四邊形BCED是平行四邊形;
(2)已知DE=2,連接BN,若BN平分∠DBC,求CN的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知:如圖,在梯形ABCD中,AB∥CD,∠D=90°,AD=CD=2,點(diǎn)E在邊AD上(不與點(diǎn)A、D重合),∠CEB=45°,EB與對(duì)角線AC相交于點(diǎn)F,設(shè)DE=x.
(1)用含x的代數(shù)式表示線段CF的長(zhǎng);
(2)如果把△CAE的周長(zhǎng)記作C△CAE,△BAF的周長(zhǎng)記作C△BAF,設(shè)=y,求y關(guān)于x的函數(shù)關(guān)系式,并寫出它的定義域;
(3)當(dāng)∠ABE的正切值是時(shí),求AB的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,△ABC的三個(gè)頂點(diǎn)坐標(biāo)分別為A(-2,1),B(-1,4),C(-3,3).
(1)畫出△ABC關(guān)于y軸對(duì)稱的△A1B1C1,并寫出A1點(diǎn)的坐標(biāo)及sin∠B1A1C1的值;
(2)以原點(diǎn)O為位似中心,位似比為1:2,在y軸的左側(cè),畫出將△ABC放大后的△A2B2C2,并寫出A2點(diǎn)的坐標(biāo);
(3)若點(diǎn)D(a,b)在線段AB上,直接寫出經(jīng)過(guò)(2)的變化后點(diǎn)D的對(duì)應(yīng)點(diǎn)D2的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在Rt△ABC中,∠ACB=90,過(guò)點(diǎn)C的直線MN∥AB,D為AB邊上一點(diǎn),過(guò)點(diǎn)D作DE⊥BC,交直線MN于E,垂足為F,連接CD,BE
(1)求證:CE=AD
(2)當(dāng)點(diǎn)D在AB中點(diǎn)時(shí),四邊形BECD是什么特殊四邊形?說(shuō)明理由
(3)若D為AB的中點(diǎn),則當(dāng)∠A的大小滿足什么條件時(shí),四邊形BECD是正方形?說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】小明與同學(xué)們?cè)跀?shù)學(xué)動(dòng)手實(shí)踐操作活動(dòng)中,將銳角為的直角三角板MPN的一個(gè)銳角頂點(diǎn)P與正方形ABCD的頂點(diǎn)A重合,正方形ABCD固定不動(dòng),然后將三角板繞著點(diǎn)A旋轉(zhuǎn),的兩邊分別與正方形的邊BC、DC或其延長(zhǎng)線相交于點(diǎn)E、F,連結(jié)EF.
(探究發(fā)現(xiàn))
在三角板旋轉(zhuǎn)過(guò)程中,當(dāng)的兩邊分別與正方形的邊CB、DC相交時(shí),如圖所示,請(qǐng)直接寫出線段BE、DF、EF滿足的數(shù)量關(guān)系:______.
(拓展思考)
在三角板旋轉(zhuǎn)過(guò)程中,當(dāng)的兩邊分別與正方形的邊CB、DC的延長(zhǎng)線相交時(shí),如圖所示,則線段BE、DF、EF又將滿足怎樣的數(shù)量關(guān)系:______,并證明你的結(jié)論;
(創(chuàng)新應(yīng)用)
若正方形的邊長(zhǎng)為4,在三角板旋轉(zhuǎn)過(guò)程中,當(dāng)的一邊恰好經(jīng)過(guò)BC邊的中點(diǎn)時(shí),試求線段EF的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某種優(yōu)質(zhì)蜜柚,投入市場(chǎng)銷售時(shí),經(jīng)調(diào)查,該蜜柚每天銷售量y(千克)與銷售單價(jià)x(元/千克)之間符合一次函數(shù)關(guān)系,如圖所示.
(1)求y與x的函數(shù)關(guān)系式;
(2)某農(nóng)戶今年共采摘該蜜柚4500千克,其保質(zhì)期為40天,若以18元/千克銷售,問(wèn)能否在保質(zhì)期內(nèi)銷售完這批蜜柚?請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】布袋里有四個(gè)小球,球表面分別標(biāo)有2、3、4、6四個(gè)數(shù)字,它們的材質(zhì)、形狀、大小完全相同。從中隨機(jī)摸出一個(gè)小球記下數(shù)字為x,再?gòu)氖O碌娜齻(gè)球中隨機(jī)摸出一個(gè)球記下數(shù)字為y,點(diǎn)A的坐標(biāo)為(x,y).運(yùn)用畫樹(shù)狀圖或列表的方法,寫出A點(diǎn)所有可能的坐標(biāo),并求出點(diǎn)A在反比例函數(shù)圖象上的概率.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com