【題目】如圖,已知O是△ABC的外接圓,AC是直徑,∠A30°,BC2,點(diǎn)DAB的中點(diǎn),連接DO并延長(zhǎng)交O于點(diǎn)P,過(guò)點(diǎn)PPFAC于點(diǎn)F

1)求劣弧PC的長(zhǎng);(結(jié)果保留π

2)求陰影部分的面積.(結(jié)果保留π).

【答案】1)劣弧PC的長(zhǎng)為π;(2S陰影π

【解析】

1)根據(jù)垂徑定理得PDAB,進(jìn)而根據(jù)含30°角的直角三角形的性質(zhì)可得OFOP,從而求得半徑為r,再利用弧長(zhǎng)公式求解即可

2)根據(jù)勾股定理求得PF的長(zhǎng)度,再根據(jù)三角形面積公式和扇形面積公式求解即可.

1點(diǎn)DAB的中點(diǎn),PD經(jīng)過(guò)圓心,

PDAB,

∵∠A30°,

∴∠POCAOD60°,OA2OD,

PFAC

∴∠OPF30°,

OFOP,

OAOCADBD,

BC2OD,

OABC2,

∴⊙O的半徑為2,

劣弧PC的長(zhǎng)=π;

2OFOP,

OF1

PF,

S陰影S扇形SOPF×1×π

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平行四邊形ABCD中,對(duì)角線(xiàn)AC,BD交于點(diǎn)O,E是邊AD上的一個(gè)動(dòng)點(diǎn)(與點(diǎn)A,D不重合),連接EO并延長(zhǎng),交BC于點(diǎn)F,連接BE,DF.下列說(shuō)法:

對(duì)于任意的點(diǎn)E,四邊形BEDF都是平行四邊形;

當(dāng)∠ABC>90°時(shí),至少存在一個(gè)點(diǎn)E,使得四邊形BEDF是矩形;

當(dāng)AB<AD時(shí),至少存在一個(gè)點(diǎn)E,使得是四邊形BEDF是菱形;

當(dāng)∠ADB=45°時(shí),至少存在一個(gè)點(diǎn)E,使得是四邊形BEDF是正方形.

所有正確說(shuō)法的序號(hào)是:_________

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,正方形ABCD邊長(zhǎng)為4,EF、G、H分別是AB、BCCD、DA上的點(diǎn),且AEBFCGDH.設(shè)A、E兩點(diǎn)間的距離為x,四邊形EFGH的面積為y,則yx的函數(shù)圖象可能是( 。

A.B.

C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】二次函數(shù)y=ax2+bx+ca≠0)的部分圖象如圖所示,圖象過(guò)點(diǎn)(-1,0),對(duì)稱(chēng)軸為直線(xiàn)x=2,下列結(jié)論:(1)4a+b=0;(2)abc>0;(3)b2-4ac>0;(4)5a+c=0;(5)若m≠2,則mam+b)>2(2a+b),其中正確的結(jié)論有______(填序號(hào)).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】(1)【問(wèn)題發(fā)現(xiàn)】

如圖1,在Rt△ABC中,AB=AC=2,∠BAC=90°,點(diǎn)D為BC的中點(diǎn),以CD為一邊作正方形CDEF,點(diǎn)E恰好與點(diǎn)A重合,則線(xiàn)段BE與AF的數(shù)量關(guān)系為   

(2)【拓展研究】

在(1)的條件下,如果正方形CDEF繞點(diǎn)C旋轉(zhuǎn),連接BE,CE,AF,線(xiàn)段BE與AF的數(shù)量關(guān)系有無(wú)變化?請(qǐng)僅就圖2的情形給出證明;

(3)【問(wèn)題發(fā)現(xiàn)】

當(dāng)正方形CDEF旋轉(zhuǎn)到B,E,F(xiàn)三點(diǎn)共線(xiàn)時(shí)候,直接寫(xiě)出線(xiàn)段AF的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】拋物線(xiàn)y=﹣x2+bx+c上部分點(diǎn)的橫坐標(biāo)x,縱坐標(biāo)y的對(duì)應(yīng)值如下表所示:

x

﹣2

﹣1

0

1

2

y

0

4

6

6

4

從上表可知,下列說(shuō)法中,錯(cuò)誤的是( )

A. 拋物線(xiàn)于x軸的一個(gè)交點(diǎn)坐標(biāo)為(﹣2,0)

B. 拋物線(xiàn)與y軸的交點(diǎn)坐標(biāo)為(0,6)

C. 拋物線(xiàn)的對(duì)稱(chēng)軸是直線(xiàn)x=0

D. 拋物線(xiàn)在對(duì)稱(chēng)軸左側(cè)部分是上升的

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中拋物線(xiàn)經(jīng)過(guò)原點(diǎn),且與直線(xiàn)交于則、兩點(diǎn).

1)求直線(xiàn)和拋物線(xiàn)的解析式;

2)點(diǎn)在拋物線(xiàn)上,解決下列問(wèn)題:

①在直線(xiàn)下方的拋物線(xiàn)上求點(diǎn),使得的面積等于20;

②連接,作軸于點(diǎn),若相似,請(qǐng)直接寫(xiě)出點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在RtABC中,∠ACB = 90°,BC = 6,AC = 8.點(diǎn)DAB邊上一點(diǎn),過(guò)點(diǎn)DDE // BC,交邊ACE.過(guò)點(diǎn)CCF // AB,交DE的延長(zhǎng)線(xiàn)于點(diǎn)F

1)如果,求線(xiàn)段EF的長(zhǎng);

2)求∠CFE的正弦值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】為迎接國(guó)慶節(jié),某工廠(chǎng)生產(chǎn)一種火爆的紀(jì)念商品,每件商品成本25元,工廠(chǎng)將該商品進(jìn)行網(wǎng)絡(luò)批發(fā),批發(fā)單價(jià)(元)與一次性批發(fā)量(件)(為正整數(shù))之間滿(mǎn)足如圖所示的函數(shù)關(guān)系.

1)求的函數(shù)解析式(也稱(chēng)關(guān)系式).

2)若一次性批發(fā)量超過(guò)20且不超過(guò)50件時(shí),求獲得的利潤(rùn)的函數(shù)關(guān)系式,同時(shí)求當(dāng)批發(fā)量為多少件時(shí),工廠(chǎng)獲利最大?最大利潤(rùn)是多少?

查看答案和解析>>

同步練習(xí)冊(cè)答案