【題目】如圖,河的兩岸l1l2相互平行,A、Bl1上的兩點,C、Dl2上的兩點,某人在點A處測得∠CAB=90°,DAB=30°,再沿AB方向前進20米到達點E(點E在線段AB上),測得∠DEB=60°,求CD兩點間的距離.

【答案】C、D兩點間的距離為30m.

【解析】直接利用等腰三角形的判定與性質(zhì)得出DE=AE=20,進而求出EF的長,再得出四邊形ACDF為矩形,則CD=AF=AE+EF求出答案.

解:過點D作l1的垂線,垂足為F,

∵∠DEB=60°,∠DAB=30°,

∴∠ADE=∠DEB﹣∠DAB=30°,

∴△ADE為等腰三角形,

∴DE=AE=20,

在Rt△DEF中,EF=DEcos60°=20×=10,

∵DF⊥AF,

∴∠DFB=90°,

∴AC∥DF,由已知l1∥l2

∴CD∥AF,

∴四邊形ACDF為矩形,CD=AF=AE+EF=30,

答:C、D兩點間的距離為30m

“點睛”此題考查了兩點之間的距離以及等腰三角形的判定與性質(zhì)以及銳角三角函數(shù)關系,得出EF的長是解題關鍵.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】已知直線k>0)與雙曲線x>0)交于點M、N,且點N的橫坐標為k. .

(1) 如圖1,當k=1時.

①求m的值及線段MN的長;

②在y軸上是否是否存在點Q,使∠MQN=90°,若存在,請求出點Q的坐標;若不存在,請說明理由.

(2) 如圖2,以MN為直徑作⊙P,當⊙Py軸相切時,求k值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在△ABC中,AB=AC,AB的垂直平分線交AB于N,交AC于M.

(1)若∠B=70°,則∠NMA的度數(shù)是
(2)連接MB,若AB=8cm,△MBC的周長是14cm.
①求BC的長;
②在直線MN上是否存在點P,使由P,B,C構成的△PBC的周長值最。咳舸嬖,標出點P的位置并求△PBC的周長最小值;若不存在,說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖所示,在△ABC中,AB=AC,BD,CE是角平分線,圖中的等腰三角形共有(

A.6個
B.5個
C.4個
D.3個

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】閱讀以下兩小題后作出相應的解答:
(1)“同位角相等,兩直線平行”,“兩直線平行,同位角相等”,這兩個命題的題設和結論在命題中的位置恰好對凋,我們把其中一命題叫做另一個命題的逆命題,請你寫出命題“角平分線上的點到角兩邊的距離相等“的逆命題,并指出逆命題的題設和結論;
(2)根據(jù)以下語句作出圖形,并寫出該命題的文字敘述.
已知:過直線AB上一點O任作射線OC,OM、ON分別平分∠AOC、∠BOC,則OM⊥ON.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】張大伯從報社以每份0.4元的價格購進了a份報紙,以每份0.5元的價格售出了b份報紙,剩余的以每份0.2元的價格退回報社,則張大伯賣報收入元.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知2xy=3,用含x的式子表示y,則______

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】(1)如圖1,△ABC中,D是BC邊上一點,則△ABD與△ADC有一個相同的高,它們的面積之比等于相應的底之比,記為(△ABD、△ADC的面積分別用記號表示).現(xiàn)有,則

(2)如圖2,△ABC中,E、F分別是BC、AC邊上一點,且有, ,AE與BF相交于點G.現(xiàn)作EH∥BF交AC于點H.依次求、、的值.

(3)如圖3,△ABC中,點P在邊AB上,點M、N在邊AC上,且有 ,

BM、BN與CP分別相交于點R、Q.現(xiàn)已知△ABC的面積為1,求△BRQ的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】化簡求值。
(1)已知x+y=15,x2+y2=113,求x2﹣xy+y2的值.
(2)先化簡,再求值: ÷ +1,在0,1,2,三個數(shù)中選一個合適的,代入求值.

查看答案和解析>>

同步練習冊答案