如圖,在△ABC中,AB=AC,∠BAC的角平分線交BC邊于點(diǎn)D,AB=5,BC=6,則AD=________.

4
分析:首先根據(jù)等腰三角形的性質(zhì):等腰三角形的三線合一,求出DB=DC=CB,AD⊥BC,再利用勾股定理求出AD的長.
解答:∵AB=AC,AD是∠BAC的角平分線,
∴DB=DC=CB=3,AD⊥BC,
在Rt△ABD中,
∵AD2+BD2=AB2
∴AD==4,
故答案為:4.
點(diǎn)評:此題主要考查了等腰三角形的性質(zhì)與勾股定理的應(yīng)用,做題的關(guān)鍵是根據(jù)等腰三角形的性質(zhì)證出△ADB是直角三角形.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

20、如圖,在△ABC中,∠BAC=45°,現(xiàn)將△ABC繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)30°至△ADE的位置,使AC⊥DE,則∠B=
75
度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,在△ABC中,∠ACB=90°,AC=BC=1,取斜邊的中點(diǎn),向斜邊作垂線,畫出一個(gè)新的等腰三角形,如此繼續(xù)下去,直到所畫出的直角三角形的斜邊與△ABC的BC重疊,這時(shí)這個(gè)三角形的斜邊為
( 。
A、
1
2
B、(
2
2
7
C、
1
4
D、
1
8

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

2、如圖,在△ABC中,DE∥BC,那么圖中與∠1相等的角是(  )

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,在△ABC中,AB=AC,且∠A=100°,∠B=
 
度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

14、如圖,在△ABC中,AB=BC,邊BC的垂直平分線分別交AB、BC于點(diǎn)E、D,若BC=10,AC=6cm,則△ACE的周長是
16
cm.

查看答案和解析>>

同步練習(xí)冊答案