【題目】在平面直角坐標(biāo)系中,將點(diǎn)A(﹣5,﹣3)向右平移8個(gè)單位長度得到點(diǎn)B,則點(diǎn)B關(guān)于y軸的對稱點(diǎn)C的坐標(biāo)是_____.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】將連續(xù)正整數(shù)按如下個(gè)規(guī)律排列
第一列 | 第二列 | 第三列 | 第四列 | 第五列 | ……… | |
第一行 | 1 | 2 | 3 | 4 | ||
第二行 | 8 | 7 | 6 | 5 | ||
第三行 | 9 | 10 | 11 | 12 | ||
第四行 | 16 | 15 | 14 | 13 | ||
第五行 | 17 | 18 | 19 | 20 | ||
……… |
若正整數(shù)2019位于第a行、第b列,則a+b=_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】綜合與實(shí)踐
背景閱讀 早在三千多年前,我國周朝數(shù)學(xué)家商高就提出:將一根直尺折成一個(gè)直角,如果勾等于三,股等于四,那么弦就等于五,即“勾三,股四,弦五”.它被記載于我國古代著名數(shù)學(xué)著作《周髀算經(jīng)》中.為了方便,在本題中,我們把三邊的比為3:4:5的三角形稱為(3,4,5)型三角形.例如:三邊長分別為9,12,15或的三角形就是(3,4,5)型三角形.用矩形紙片按下面的操作方法可以折出這種類型的三角形.
實(shí)踐操作 如圖1,在矩形紙片ABCD中,AD=8cm,AB=12cm.
第一步:如圖2,將圖1中的矩形紙片ABCD沿過點(diǎn)A的直線折疊,使點(diǎn)D落在AB上的點(diǎn)E處,折痕為AF,再沿EF折疊,然后把紙片展平.
第二步:如圖3,將圖2中的矩形紙片再次折疊,使點(diǎn)D與點(diǎn)F重合,折痕為GH,然后展平,隱去AF.
第三步:如圖4,將圖3中的矩形紙片沿AH折疊,得到△AD′H,再沿AD′折疊,折痕為AM,AM與折痕EF交于點(diǎn)N,然后展平.
問題解決
(1)請?jiān)趫D2中證明四邊形AEFD是正方形.
(2)請?jiān)趫D4中判斷NF與ND′的數(shù)量關(guān)系,并加以證明.
(3)請?jiān)趫D4中證明△AEN是(3,4,5)型三角形.
探索發(fā)現(xiàn)
(4)在不添加字母的情況下,圖4中還有哪些三角形是(3,4,5)型三角形?請找出并直接寫出它們的名稱.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知M是一個(gè)五次多項(xiàng)式,N是一個(gè)三次多項(xiàng)式,則M+N一定是( )
A. 五次多項(xiàng)式B. 五次整式C. 多項(xiàng)式D. 單項(xiàng)式
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,正方形ABCD的邊長為1,其面積標(biāo)記為S1 , 以CD為斜邊作等腰直角三角形,以該等腰直角三角形的一條直角邊為邊向外作正方形,其面積標(biāo)記為S2 , …,按照此規(guī)律繼續(xù)下去,則S2017的值為( )
A.
B.
C.
D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】將直線y=x+b沿y軸向下平移3個(gè)單位長度,點(diǎn)A(﹣1,2)關(guān)于y軸的對稱點(diǎn)落在平移后的直線上,則b的值為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知⊙O的半徑長為1,AB、AC是⊙O的兩條弦,且AB=AC,BO的延長線交AC于點(diǎn)D,聯(lián)結(jié)OA、OC.
(1)求證:△OAD∽△ABD;
(2)當(dāng)△OCD是直角三角形時(shí),求B、C兩點(diǎn)的距離;
(3)記△AOB、△AOD、△COD 的面積分別為S1、S2、S3,如果S2是S1和S3的比例中項(xiàng),求OD的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線l1、l2相交于點(diǎn)A(2,3),直線l1與x軸交點(diǎn)B的坐標(biāo)為(﹣1,0),直線l2與y軸交于點(diǎn)C,已知直線l2的解析式為y=2.5x﹣2,結(jié)合圖象解答下列問題:
(1)求直線l1的解析式;
(2)求△ABC的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,CD∥AB,∠ABC,∠BCD 的角平分線交 AD 于 E 點(diǎn),且 E 在 AD 上,CE 交 BA 的延長線于 F 點(diǎn).
(1)試問 BE 與 CF 互相垂直嗎?若垂直,請說明理由;
(2)若 CD=3,AB=4,求 BC 的長 .
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com