【題目】已知:如圖,四邊形ABCD的對(duì)角線AC和BD相交于點(diǎn)E,AD=DC,DC2=DEDB,求證:
(1)△BCE∽△ADE;
(2)ABBC=BDBE.
【答案】(1)見解析;(2)見解析.
【解析】
(1)由∠DAC=∠DCA,對(duì)頂角∠AED=∠BEC,可證△BCE∽△ADE.
(2)根據(jù)相似三角形判定得出△ADE∽△BDA,進(jìn)而得出△BCE∽△BDA,利用相似三角形的性質(zhì)解答即可.
證明:(1)∵AD=DC,
∴∠DAC=∠DCA,
∵DC2=DEDB,
∴=,∵∠CDE=∠BDC,
∴△CDE∽△BDC,
∴∠DCE=∠DBC,
∴∠DAE=∠EBC,
∵∠AED=∠BEC,
∴△BCE∽△ADE,
(2)∵DC2=DEDB,AD=DC
∴AD2=DEDB,
同法可得△ADE∽△BDA,
∴∠DAE=∠ABD=∠EBC,
∵△BCE∽△ADE,
∴∠ADE=∠BCE,
∴△BCE∽△BDA,
∴=,
∴ABBC=BDBE.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在同一平面直角坐標(biāo)系中有5個(gè)點(diǎn):A(1,1),B(-3,-1),C(-3,1),
D(-2,-2),E(0,-3)。
(1)畫出△ABC的外接圓⊙P,并指出點(diǎn)D與⊙P的位置關(guān)系;
(2)若直線l經(jīng)過點(diǎn)D(-2,-2),E(0,-3),判斷直線l與⊙P的位置關(guān)系。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,李師傅想用長(zhǎng)為80米的柵欄,再借助教學(xué)樓的外墻圍成一個(gè)矩形的活動(dòng)區(qū). 已知教學(xué)樓外墻長(zhǎng)50米,設(shè)矩形的邊米,面積為平方米.
(1)請(qǐng)寫出活動(dòng)區(qū)面積與之間的關(guān)系式,并指出的取值范圍;
(2)當(dāng)為多少米時(shí),活動(dòng)區(qū)的面積最大?最大面積是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】A、B兩市相距150千米,分別從A、B處測(cè)得國(guó)家級(jí)風(fēng)景區(qū)中心C處的方位角如圖所示,風(fēng)景區(qū)區(qū)域是以C為圓心,45千米為半徑的圓,tanα=1.627,tanβ=1.373.為了開發(fā)旅游,有關(guān)部門設(shè)計(jì)修建連接AB兩市的高速公路.問連接AB高速公路是否穿過風(fēng)景區(qū),請(qǐng)說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,在銳角三角形ABC中,AB=8,AC=5,BC=6,沿過點(diǎn)B的直線折疊這個(gè)三角形,使點(diǎn)C落在AB邊上的點(diǎn)E處,折痕為BD,下列結(jié)論:①∠CBD=∠EBD,②DE⊥AB,③三角形ADE的周長(zhǎng)是7,④,⑤.其中正確的個(gè)數(shù)有( )
A.2B.3C.4D.5
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某一天,小明和小亮來到一河邊,想用平面鏡和皮尺測(cè)量這條河的大致寬度,兩人在確保無(wú)安全隱患的情況下,現(xiàn)在河岸邊選擇了一點(diǎn)C(點(diǎn)C與河對(duì)岸岸邊上的一棵樹的底部點(diǎn)B所確定的直線垂直于河岸).小明到F點(diǎn)時(shí)正好在平面鏡中看到樹尖A,小亮在點(diǎn)D放置平面鏡,小亮到H點(diǎn)時(shí)正好在平面鏡中看到樹尖A,且F、D、H均在BC的延長(zhǎng)線上,小明的眼睛距地面的高度EF=1.5m,小亮的眼睛距地面的高度GH=1.6m,測(cè)得CF=1m,DH=2m,CD=8.4m,AB⊥BH,EF⊥BH,GH⊥BH,根據(jù)以上測(cè)量過程及測(cè)量數(shù)據(jù),請(qǐng)你求出河寬BC是多少米?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖,在平面直角坐標(biāo)系xOy中,直線AB與x軸交于點(diǎn)A(﹣2,0),與反比例函數(shù)在第一象限內(nèi)的圖象的交于點(diǎn)B(2,n),連接BO,若S△AOB=4.
(1)求該反比例函數(shù)的解析式和直線AB的解析式;
(2)若直線AB與y軸的交點(diǎn)為C,求△OCB的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】閱讀:如圖1,在△ABC中,BE是AC邊上的中線, D是BC邊上的一點(diǎn),CD:BD=1:2,AD與BE相交于點(diǎn)P,求的值.小昊發(fā)現(xiàn),過點(diǎn)A作AF∥BC,交BE的延長(zhǎng)線于點(diǎn)F,通過構(gòu)造△AEF,經(jīng)過推理和計(jì)算能夠使問題得到解決(如圖2).
(1)的值為 ;
(2)參考小昊思考問題的方法,解決問題:
如圖3,在△ABC中,∠ACB=90°,點(diǎn)D在BC的延長(zhǎng)線上,AD與AC邊上的中線BE的延長(zhǎng)線交于點(diǎn)P,DC:BC:AC=1:2:3 .
求 的值;
若CD=2,求BP的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知,在中,,AD平分,點(diǎn)M是AC的中點(diǎn),在AD上取點(diǎn)E,使得,EM與DC的延長(zhǎng)線交于點(diǎn)F.
當(dāng)時(shí),求AE的長(zhǎng);求的大小.
當(dāng)時(shí),探究與的數(shù)量關(guān)系.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com