如圖,在中,,,;在中,,,試判斷這兩個三角形是否相似.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

如圖,在平面直角坐標系xoy中,M是x軸正半軸上一點,⊙M與x軸的正半軸交于A,B兩點,A在B的左側,且OA,OB的長是方程x2-12x+27=0的兩根,ON是⊙M的切線,N為切點,N在第四象限.
(1)求⊙M的直徑;
(2)求直線ON的解析式;
(3)在x軸上是否存在一點T,使△OTN是等腰三角形?若存在請在圖2中標出T點所在位置,并畫出△OTN(要求尺規(guī)作圖,保留作圖痕跡,不寫作法,不證明,不求T的坐標);若不存在,請說明理由.
精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

已知如圖,在平面直角坐標系中有四點,坐標分別為A(-4,3)、B(4,3)、M(0,1)、Q(1,2),動點P在線段AB上,從點A出發(fā)向點B以每秒1個單位運動.連接PM、PQ并延長分別交x軸于C、D兩點(如圖).
(1)在點P移動的過程中,若點M、C、D、Q能圍成四邊形,則t的取值范圍是
 
,并寫出當t=2時,點C的坐標
 

(2)在點P移動的過程中,△PMQ可能是軸對稱圖形嗎?若能,請求出符合條件的點P的坐標;若不能,請說明理由.
(3)在點P移動的過程中,求四邊形MCDQ的面積S的范圍.精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2011•葫蘆島一模)如圖,在矩形ABCD中,AD=8,AB=6,點M是BC的中點,點P從點M出發(fā)沿MB以每秒1個單位長的速度向點B勻速運動,到達點B后立刻以原速度沿BM返回;點Q從點M出發(fā)以每秒1個單位長的速度在射線MC上勻速運動,在點P,Q的運動過程中,以PQ為邊作正方形PQEF,使它與矩形ABCD在BC的同側,點P,Q同時出發(fā),當點P返回點M時停止運動,點Q也隨之停止,設點P,Q運動的時間是t秒(t>0)
(1)用含t的代數(shù)式表示線段BQ的長;
(2)設正方形PQEF與矩形ABCD重疊部分的面積為S,求S與t之間的函數(shù)關系式;
(3)連接AC,當正方形PQEF與△ADC重疊部分為三角形時,直接寫出t的取值范圍.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

問題情境:如圖1,在直角三角形ABC中,∠BAC=90°,AD⊥BC于點D,可知:∠BAD=∠C(不需要證明);
特例探究:如圖2,∠MAN=90°,射線AE在這個角的內部,點B、C在∠MAN的邊AM、AN上,且AB=AC,CF⊥AE于點F,BD⊥AE于點D.證明:△ABD≌△CAF;
歸納證明:如圖3,點B,C在∠MAN的邊AM、AN上,點E,F(xiàn)在∠MAN內部的射線AD上,∠1、∠2分別是△ABE、△CAF的外角.已知AB=AC,∠1=∠2=∠BAC.求證:△ABE≌△CAF;
拓展應用:如圖4,在△ABC中,AB=AC,AB>BC.點D在邊BC上,CD=2BD,點E、F在線段AD上,∠1=∠2=∠BAC.若△ABC的面積為15,則△ACF與△BDE的面積之和為
5
5

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,在平面直角坐標系中,四邊形OABC為矩形,點A、B的坐標分別為(12,0)、(12,6),直線y=-x+b與y軸交于點P,與邊OA交于點D,與邊BC交于點E.
【小題1】若直線y=-x+b平分矩形OABC的面積,求b的值;
【小題2】在(1)的條件下,當直線y=-x+b繞點P順時針旋轉時,與直線BC和x軸分別交于點N、M,問:是否存在ON平分∠CNM的情況?若存在,求線段DM的長;若不存在,請說明理由;
【小題3】在(1)的條件下,將矩形OABC沿DE折疊,若點O落在邊BC上,求出該點坐標;若不在邊BC上,求將(1)中的直線沿y軸怎樣平移,使矩形OABC沿平移后的直線折疊,點O恰好落在邊BC上

查看答案和解析>>

同步練習冊答案