【題目】如圖,是銳角的外接圓,是的切線,切點(diǎn)為,,連結(jié)交于,的平分線交于,連結(jié).下列結(jié)論:①平分;②連接,點(diǎn)為的外心;③;④若點(diǎn),分別是和上的動點(diǎn),則的最小值是.其中一定正確的是__________(把你認(rèn)為正確結(jié)論的序號都填上).
【答案】
【解析】
如圖1,連接,通過切線的性質(zhì)證,進(jìn)而由 ,即可由垂徑定理得到F是的中點(diǎn),根據(jù)圓周角定理可得,可得平分;由三角形的外角性質(zhì)和同弧所對的圓周角相等可得,可得,可得點(diǎn)為得外心;如圖,過點(diǎn)C作 交的延長線與點(diǎn)通過證明,可得;如圖,作點(diǎn)關(guān)于的對稱點(diǎn) ,當(dāng)點(diǎn)在線段上,且時(shí),.
如圖,連接,
∵是的切線,
∴ ,∵
∴,且為半徑
∴垂直平分
∴
∴
∴平分,故正確
點(diǎn)的外心,故正確;
如圖,過點(diǎn)C作 交的延長線與點(diǎn)
,故正確;
如圖,作點(diǎn)關(guān)于的對稱點(diǎn) ,
點(diǎn)與點(diǎn)關(guān)于對稱,
當(dāng)點(diǎn)在線段上,且時(shí),,
且
∴的最小值為;故正確.
故答案為:.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,矩形ABCD的對角線BD經(jīng)過坐標(biāo)原點(diǎn),矩形的邊分別平行于坐標(biāo)軸,點(diǎn)C在反比例函數(shù)的圖象上.若點(diǎn)A的坐標(biāo)為(-2,-2),則k的值為 。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在菱形ABCD中,對角線AC,BD交于點(diǎn)O,AE⊥BC交CB延長線于E,CF∥AE交AD延長線于點(diǎn)F.
(1)求證:四邊形AECF為矩形;
(2)連接OE,若AE=4,AD=5,求tan∠OEC的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】速滑運(yùn)動受到許多年輕人的喜愛。如圖,四邊形是某速滑場館建造的滑臺,已知,滑臺的高為米,且坡面的坡度為.后來為了提高安全性,決定降低坡度,改造后的新坡面AC的坡度為.
(1)求新坡面的坡角及的長;
(2)原坡面底部的正前方米處是護(hù)墻,為保證安全,體育管理部門規(guī)定,坡面底部至少距護(hù)墻米。請問新的設(shè)計(jì)方案能否通過,試說明理由(參考數(shù)據(jù):)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在矩形中,,分別是的中點(diǎn),分別在、上, 且,連結(jié),則與重疊部分六邊形的周長為________
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線與直線有兩個(gè)不同的交點(diǎn).下列結(jié)論:①;②當(dāng)時(shí),有最小值;③方程有兩個(gè)不等實(shí)根;④若連接這兩個(gè)交點(diǎn)與拋物線的頂點(diǎn),恰好是一個(gè)等腰直角三角形,則;其中正確的結(jié)論的個(gè)數(shù)是( )
A.4B.3C.2D.1
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某林業(yè)部門統(tǒng)計(jì)某種樹苗在本地區(qū)一定條件下的移植成活率,結(jié)果如表:
移植的棵數(shù) | 300 | 700 | 1000 | 5000 | 15000 |
成活的棵數(shù) | 280 | 622 | 912 | 4475 | 13545 |
成活的頻率 | 0.933 | 0.889 | 0.912 | 0.895 | 0.903 |
根據(jù)表中的數(shù)據(jù),估計(jì)這種樹苗移植成活的概率為_____(精確到0.1);如果該地區(qū)計(jì)劃成活4.5萬棵幼樹,那么需要移植這種幼樹大約_____萬棵.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,在△ABC中,∠B=90°,∠C=30°,動點(diǎn)P從點(diǎn)B開始沿邊BA、AC向點(diǎn)C以恒定的速度移動,動點(diǎn)Q從點(diǎn)B開始沿邊BC向點(diǎn)C以恒定的速度移動,兩點(diǎn)同時(shí)到達(dá)點(diǎn)C,設(shè)△BPQ的面積為y(cm2).運(yùn)動時(shí)間為x(s),y與x之間關(guān)系如圖2所示,當(dāng)點(diǎn)P恰好為AC的中點(diǎn)時(shí),PQ的長為( 。
A.2B.4C.2D.4
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知二次函數(shù)y=-x2+bx+c(b,c為常數(shù))的圖象經(jīng)過點(diǎn)(2,3),(3,0).
(1)則b=,c=;
(2)該二次函數(shù)圖象與y軸的交點(diǎn)坐標(biāo)為,頂點(diǎn)坐標(biāo)為;
(3)在所給坐標(biāo)系中畫出該二次函數(shù)的圖象;
(4)根據(jù)圖象,當(dāng)-3<x<2時(shí),y的取值范圍是.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com