【題目】烏魯木齊周邊多地盛產(chǎn)草莓,今年某水果銷售店在草莓銷售旺季,以15/kg 的成本價進(jìn)50kg有機(jī)草莓,銷售人員銷售發(fā)現(xiàn)草莓損壞率為25%;

1)對于水果店來說完好的草莓實(shí)際成本價是多少元/kg?

2)按照這個實(shí)際成本設(shè)計銷售單價,規(guī)定試銷期間銷售單價不低于成本單價,也不高于每千克40元,經(jīng)試銷發(fā)現(xiàn),銷售量y(千克)與銷售單價x(元)符合一次函數(shù)關(guān)系,如圖是yx的函數(shù)關(guān)系圖象,設(shè)該水果銷售店試銷草莓獲得的利潤為W元,求W的最大值.

【答案】(1)20元/kg;(2) 5200元.

【解析】試題分析: 用總進(jìn)價除以沒有損害的有機(jī)草莓?dāng)?shù)量就是實(shí)際成本.

由圖象可設(shè)的函數(shù)關(guān)系式為 代入圖象上兩點(diǎn)的坐標(biāo),利用待定系數(shù)法求出銷售量與銷售單價的函數(shù)關(guān)系式;

對于

試題解析: 總成本: (元).

沒有損壞的有機(jī)草莓?dāng)?shù)量:

實(shí)際成本價為: (元).

設(shè)的函數(shù)關(guān)系式為

根據(jù)題意,得:

解得

的函數(shù)關(guān)系式為

2)由已知得:

∴當(dāng)時, 的增大而增大.

時, 有最大值,最大值為(元),

即銷售單價定為40元時,銷售店可獲得最大利潤,最大利潤是5200.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】中國"蛟龍"號深潛器目前最大深潛極限為7062.68米.如圖,某天該深潛器在海面下2200米處作業(yè),測得正前方的黑匣子C的俯角為45°,該深潛器在同一深度向正前方直線航行2000米到B點(diǎn),此時測得黑匣子C的俯角為60°請通過計算判斷蛟龍號能否在保證安全的情況下打撈位于海底的黑匣子C

(參考數(shù)據(jù): ,

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖是二次函數(shù) yax2bxc(a≠0)的圖象的一部分,給出下列命題:①abc0;b2a;ax2bxc0的兩根分別為-31;a2bc0.其中正確的命題是( )

A. ①② B. ②③ C. ①③ D. ①②③④

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】四張質(zhì)地相同的卡片如圖所示.將卡片洗勻后,背面朝上放置在桌面上.

(1)求隨機(jī)抽取一張卡片,恰好得到數(shù)字2的概率;

(2)小貝和小晶想用以上四張卡片做游戲,游戲規(guī)則見信息圖.你認(rèn)為這個游戲公平嗎?請用列表法或畫樹形圖法說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】對于二次函數(shù) y ax2 2a 1x a 1a 0,有下列結(jié)論:①其圖象與 x 軸一定相交;②若 a 0 函數(shù)在 x 1 時,y x 的增大而減小;③無論 a 取何值,拋物線的頂點(diǎn)始終在同一條直線上;④無論 a 取何值,函數(shù)圖象都經(jīng)過同一個點(diǎn).其中所有正確的結(jié)論是:

A. ①②③ B. ①③④ C. ①②④ D. ①②③④

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在矩形中,,,邊上一點(diǎn),將沿翻折,點(diǎn)落在點(diǎn)處,當(dāng)為直角三角形時,________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知AD是△ABC的角平分線,AD的中垂線交AB于點(diǎn)F,交BC的延長線于點(diǎn)E.以下四個結(jié)論:(1)∠EAD=∠EDA;(2)DFAC;(3)∠FDE=90°;(4)∠B=∠CAE.恒成立的結(jié)論有( )

A. (1)(2)B. (2)(3)(4)C. (1)(2)(4)D. (1)(2)(3)(4)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:如圖,在△ABC中,點(diǎn)D,E是邊BC上的兩點(diǎn),且AB=BE,AC=CD.

(1)若∠BAC =90°,求∠DAE的度數(shù);

(2)若∠BAC=120°,直接寫出∠DAE的度數(shù)

(3)設(shè)∠BAC=α,∠DAE=β,猜想α與β的之間數(shù)量關(guān)系(不需證明).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知A、BC、D是⊙O上的四點(diǎn), ,AC是四邊形ABCD的對角線

1)如圖1,連結(jié)BD,若∠CDB=60°,求證:AC是∠DAB的平分線;

2)如圖2,過點(diǎn)DDEAC,垂足為E,若AC=7,AB=5,求線段AE的長度.

查看答案和解析>>

同步練習(xí)冊答案