閱讀下面材料:
問題:如圖①,在△ABC中, DBC邊上的一點(diǎn),若∠BAD=∠C=2∠DAC=45°,DC=2.求BD的長(zhǎng).
小明同學(xué)的解題思路是:利用軸對(duì)稱,把△ADC進(jìn)行翻折,再經(jīng)過推理、計(jì)算使問題得到解決.
(1)請(qǐng)你回答:圖中BD的長(zhǎng)為   
(2)參考小明的思路,探究并解答問題:如圖②,在△ABC中,DBC邊上的一點(diǎn),若∠BAD=∠C=2∠DAC=30°,DC=2,求BDAB的長(zhǎng).
            
圖①                                   圖②
(2)BD=2;

試題分析:解:(1)折疊△ADC得△ACE。則AD=AE
則可證∠DAE=2∠DAC=45°=∠BAD,又因?yàn)樵凇鰽BC中,可證∠B=∠ADB=67.5°。所以AB=AD。
則證出△ABD≌△AED(SAS),所以可得BD=DE。且∠ADB=∠ADE=67.5°。所以∠EDC=180°-2∠ADB=45°。
所以Rt△DCE為等腰直角三角形。因?yàn)镃D=2,通過勾股定理可求DE=
所以.           
(2)把△ADC沿AC翻折,得△AEC,連接DE,

∴△ADC≌△AEC.
∴∠DAC=∠EAC,∠DCA=∠ECA, DC=EC.
∵∠BAD=∠BCA=2∠DAC=30°,
∴∠BAD=∠DAE=30°,∠DCE=60°.
∴△CDE為等邊三角形.
∴DC=DE.
在AE上截取AF=AB,連接DF,
∴△ABD≌△AFD.
∴BD=DF.
在△ABD中,∠ADB=∠DAC+∠DCA=45°,
∴∠ADE=∠AED =75°,∠ABD =105°.
∴∠AFD =105°.
∴∠DFE=75°.
∴∠DFE=∠DEF.
∴DF=DE.  
∴BD=DC=2. 
作BG⊥AD于點(diǎn)G,
∴在Rt△BDG中,.  
∴在Rt△ABG中,.                                  
點(diǎn)評(píng):本題難度較大,主要考查學(xué)生對(duì)全等三角形判定與性質(zhì)等掌握。本題中帶有提示可節(jié)省時(shí)間直接找出解題線索,審題是要抓住提示關(guān)鍵。
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

在三邊分別為下列長(zhǎng)度的三角形中,哪個(gè)不是直角三角形(   ).
A.B.
C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

如圖所示,已知△ ABC中,∠A=84°,點(diǎn)B、C、M在一條直線上,∠ABC和∠ACM兩角的平分線交于點(diǎn)P1,∠P1BC和∠P1CM兩角的平分線交于點(diǎn)P2,∠P2BC和∠P2CM兩角的平分線交于點(diǎn)P3,則∠P3=_____°。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,為修通鐵路鑿?fù)ㄋ淼繟C,測(cè)得∠A=50°,∠B=40°,AB=5公里,BC=4公里,若每天鑿隧道0.25公里,求幾天才能把隧道AC鑿?fù)ǎ?img src="http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408230243125661958.jpg" style="vertical-align:middle;" />

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

如圖,在△ABC中,D、E分別是AB、AC上的點(diǎn),點(diǎn)F在BC的延長(zhǎng)線上,DE∥BC,∠A=46°,∠1=52°,則∠2=      度.
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

如果一個(gè)十二邊形的每個(gè)內(nèi)角都是相等的,那么這個(gè)內(nèi)角的度數(shù)是        。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

如圖,一只螞蟻從長(zhǎng)、寬都是3,高是8的長(zhǎng)方體紙箱的A點(diǎn)沿紙箱爬到B點(diǎn),那么它所行的最短路線的長(zhǎng)是_____________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,在△ABC中,AD平分∠BAC,P為線段AD上的一個(gè)動(dòng)點(diǎn),PE⊥AD交直線BC于點(diǎn)E.

(1)若∠B=35°,∠ACB=85°,求∠E的度數(shù);
(2)當(dāng)P點(diǎn)在線段AD上運(yùn)動(dòng)時(shí),猜想∠E與∠B、∠ACB的數(shù)量關(guān)系,寫出結(jié)論無需證明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

如圖EB交AC于M,交FC于D,AB交FC于N,∠E=∠F=90°,∠B=∠C,AE=AF.給出下列結(jié)論:①∠1=∠2;②BE=CF;③△ACN≌△ABM;④CD=DN.其中正確的結(jié)論有      (填序號(hào)).

查看答案和解析>>

同步練習(xí)冊(cè)答案