在△ABC中,BC=BA,點(diǎn)D在AB上,且AC=CD=DB,則∠B=________.

36°
分析:首先設(shè)∠B=x°,由CD=DB,根據(jù)等邊對(duì)等角的性質(zhì),即可得∠BCD=x°,然后利用三角形外角的性質(zhì),求得∠CDA=2x°,又由AC=CD與BC=BA,即可求得∠A與∠BCA的度數(shù),根據(jù)三角形內(nèi)角和定理,即可得方程:2x+2x+x=180,解此方程即可求得答案.
解答:設(shè)∠B=x°,
∵CD=DB,
∴∠BCD=∠B=x°,
∴∠CDA=∠B+∠BCD=2x°,
∵AC=DC,
∴∠A=∠CDA=2x°,
∵BC=BA,
∴∠BCA=∠A=2x°,
∵∠BCA+∠A+∠B=180°,
∴2x+2x+x=180,
解得:x=36°,
∴∠B=36°.
故答案為:36°.
點(diǎn)評(píng):此題考查了等腰三角形的性質(zhì)、三角形外角的性質(zhì)以及三角形內(nèi)角和定理.此題難度適中,解題的關(guān)鍵是掌握數(shù)形結(jié)合思想與方程思想的應(yīng)用.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

在△ABC中,BC=5,AC=12,AB=13,在AB、AC上分別取點(diǎn)D、E,使線段DE將△ABC分成面積相等的兩部分,則這樣線段的最小值是
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,已知AB⊥BC,CD⊥AD.
(1)在△ABC中,BC邊上的高是線段
 
;
(2)若AB=3cm,CD=2cm,AE=4cm,則S△AEC=
 
cm2

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

19、如圖所示,在△ABC中,BC>AC,點(diǎn)D在BC上,且DC=AC,∠ACB的平分線CF交AD于點(diǎn)F.點(diǎn)E是AB的中點(diǎn),連接EF.
(1)求證:EF∥BC;
(2)若△ABD的面積是6,求四邊形BDFE的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖:在△ABC中,BC=2AB=4,AD為邊BC上的中線,E、F分別為BC、AB上的動(dòng)點(diǎn),且CE=BF,EF與AD交于點(diǎn)G.FH⊥AG于H
(1)①如圖1,當(dāng)∠B=90°時(shí),F(xiàn)G
=
=
EG;GH=
2
2

②如圖2,當(dāng)∠B=60°時(shí),F(xiàn)G
=
=
EG;GH=
1
1

③如圖3,當(dāng)∠B=α?xí)r,F(xiàn)G
=
=
EG;GH=
1
2
AD
1
2
AD

請(qǐng)你先填上空,再?gòu)囊陨先齻(gè)命題中任選擇一個(gè)進(jìn)行證明
(2)如圖4,若(1)中的點(diǎn)E、F分別在BC、AB的延長(zhǎng)線上,試問(wèn)(1)中的結(jié)論是否仍然成立.若成立,請(qǐng)證明你的結(jié)論;若不成立,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,在△ABC中,BC=8cm,AB的垂直平分線交AB于點(diǎn)D,交邊AC點(diǎn)E,AC的長(zhǎng)為12cm,則△BCE的周長(zhǎng)等于( 。

查看答案和解析>>

同步練習(xí)冊(cè)答案