【題目】某商場銷售一批名牌襯衫,平均每天可銷售20件每件盈利40元.為了擴大銷售,增加盈利,盡量減少庫存,商場決定采取適當的降價措施.經調查發(fā)現,如果每件襯衫每降價5元,商場平均每天可多售出10件,求:
(1)若商場每件襯衫降價10元,則商場每天可盈利多少元?
(2)若商場平均每天要盈利1250元,每件襯衫應降價多少元?
(3)要使商場平均每天盈利1500元,可能嗎?請說明理由.
【答案】(1)商場每天可盈利1200元;(2)每件襯衫應降價15元;(3)不可能,理由見解析.
【解析】
(1)根據降價10元求出每天盈利的錢即可;
(2)設每件襯衫降價x元,根據題意列出方程,求出方程的解即可得到結果;
(3)設每件襯衫降價y元,根據題意列出方程,求出方程的解即可得到結果.
(1)降價10元,每天可多售出10件,
(40﹣10)×(20+20)=1200,
答:商場每天可盈利1200元;
(2)設每件襯衫降價x元,
依題意得:(40﹣x)(20+10×)=1250,
化簡得:x2﹣30x+225=0,
解得:x1=x2=15,
答:每件襯衫應降價15元;
(3)不可能,理由是:
假設每件襯衫降價y元時,商場平均每天盈利1500元,
(40﹣y)(20+10×)=1500,
化簡得:y2﹣30y+350=0,
∵△=900﹣1400=﹣500<0,
∴原方程無實數根,
則不可能.
科目:初中數學 來源: 題型:
【題目】某學校為九年級數學競賽獲獎選手購買以下三種獎品,其中小筆記本每本5元,大筆記本每本7元,鋼筆每支10元,購買的大筆記本的數量是鋼筆數量的2倍,共花費346元,若使購買的獎品總數最多,則這三種獎品中,大筆記本購買的數量是____本.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】折紙飛機是我們兒時快樂的回憶,現有一張長為290mm,寬為200mm的白紙,如圖所示,以下面幾個步驟折出紙飛機:(說明:第一步:白紙沿著EF折疊,AB邊的對應邊A′B′與邊CD平行,將它們的距離記為x;第二步:將EM,MF分別沿著MH,MG折疊,使EM與MF重合,從而獲得邊HG與A′B′的距離也為x),則PD=______mm.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某商場用24000元購入一批空調,然后以每臺3000元的價格銷售,因天氣炎熱,空調很快售完;商場又以52000元的價格再次購入該種型號的空調,數量是第一次購入的2倍,但購入的單價上調了200元,售價每臺也上調了200元.
(1)商場第一次購入的空調每臺進價是多少元?
(2)商場既要盡快售完第二次購入的空調,又要在這兩次空調銷售中獲得的利潤率不低于22%,打算將第二次購入的部分空調按每臺九五折出售,最多可將多少臺空調打折出售?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知:如圖1,在面積為3的正方形ABCD中,E、F分別是BC和CD邊上的兩點,AE⊥BF于點G,且BE=1.
(1)求證:△ABE≌△BCF;
(2)求出△ABE和△BCF重疊部分(即△BEG)的面積;
(3)現將△ABE繞點A逆時針方向旋轉到△AB′E′(如圖2),使點E落在CD邊上的點E′處,問△ABE在旋轉前后與△BCF重疊部分的面積是否發(fā)生了變化?請說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,正方形ABCD中,對角線AC、BD相交于點O,點E是BC的中點,AE交BD于點F,BH⊥AE于點G,連接OG,則下列結論中①OF=OH,②△AOF∽△BGF,③tan∠GOH=2,④FG+CH=GO,正確的個數是( 。
A. 1B. 2C. 3D. 4
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在平面直角坐標系中,直線l的函數表達式為y=x,點O1的坐標為(1,0),以O1為圓心,O1O為半徑畫半圓,交直線l于點P1,交x軸正半軸于點O2,由弦P1O2和圍成的弓形面積記為S1,以O2為圓心,O2O為半徑畫圓,交直線l于點P2,交x軸正半軸于點O3,由弦P2O3和圍成的弓形面積記為S2,以O3為圓心,O3O為半徑畫圓,交直線l于點P3,交x軸正半軸于點O4,由弦P3O4和圍成的弓形面積記為S3;…按此做法進行下去,其中S2018的面積為__________.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】為推進郴州市創(chuàng)建國家森林城市工作,盡快實現“讓森林走進城市,讓城市擁抱森林”的構想,今年三月份,某縣園林辦購買了甲、乙兩種樹苗共1000棵,其中甲種樹苗每棵40元,乙種樹苗每棵50元,據相關資料表明:甲、乙兩種樹苗的成活率分別為85%和90%.
(1)若購買甲、乙兩種樹苗共用去了46500元,則購買甲、乙兩種樹苗各多少棵?
(2)若要使這批樹苗的成活率不低于88%,則至多可購買甲種樹苗多少棵?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,AB是⊙O的直徑,C是弧AB的中點,弦CD與AB相交于E.
(1)若∠AOD=45°,求證:CE=ED;(2)若AE=EO,求tan∠AOD的值.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com