分析 根據(jù)矩形性質(zhì)得出AC=2AO,BD=2BO,AC=BD,推出AO=OB,得出等邊三角形AOB,得出AB,由勾股定理求出BC,即可求出矩形ABCD的面積.
解答 解:∵四邊形ABCD是矩形,
∴AC=2AO,BD=2BO,AC=BD=4cm,∠ABC=90°,
∴AO=OB=2cm,
∵∠AOB=60°,
∴△AOB是等邊三角形,
∴AB=AO=2cm,
∴BC=$\sqrt{A{C}^{2}-A{B}^{2}}$=$\sqrt{{4}^{2}-{2}^{2}}$=2$\sqrt{3}$(cm),
∴矩形ABCD的面積=AB•BC=2×2$\sqrt{3}$=4$\sqrt{3}$(cm2);
故答案為:2cm,4$\sqrt{3}$cm2.
點(diǎn)評(píng) 本題考查了等邊三角形的性質(zhì)和判定,矩形的性質(zhì)的應(yīng)用,勾股定理;熟練掌握矩形的性質(zhì),證明三角形是等邊三角形是解決問題的關(guān)鍵.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com