如圖,在平行四邊形ABCD中,AD=2AB,M是AD的中點(diǎn),CE⊥AB于點(diǎn)E,∠CEM=40°,則∠DME是( )

A.150°
B.140°
C.135°
D.130°
【答案】分析:添加輔助線,構(gòu)造△MDF,利用角邊角證明△AME與△FMD全等,得到M為EF的中點(diǎn),根據(jù)平行四邊形的對(duì)邊平行,得到∠BEC等于∠ECF都為直角,根據(jù)直角三角形斜邊上的中線等于斜邊的一半,得出ME和MC相等,根據(jù)等比對(duì)等角,得到∠MEC等于∠MCE都等于40°,從而得出∠EMC和∠MCD的度數(shù),再根據(jù)AD等于AB的二倍,AD等于MD的二倍,所以MD等于AB,根據(jù)平行四邊形的性質(zhì)得AB=CD,即MD=CD,根據(jù)等邊對(duì)等角求出∠DMC的度數(shù),而要求的角等于上邊求出的∠EMC和∠DMC的和,從而求出答案.
解答:解:延長(zhǎng)EM與CD的延長(zhǎng)線交于點(diǎn)F,連接CM,
∵M(jìn)是AD的中點(diǎn),∴AM=DM,
∵ABCD為平行四邊形,
∴AB∥CD,又∠BEC=90°,
∴∠ECF=90°,∠A=MDF,又∠AME=∠DMF,
∴△AEM≌△DFM,
∴EM=FM,
∴CM=EM=EF,
∴∠MEC=∠MCE=40°,
∴∠EMC=100°,∠MCD=50°,
又∵M(jìn)為AD中點(diǎn),AD=2DC,
∴MD=CD=AD,
∴∠DMC=∠DCM=50°,
∴∠DME=∠EMC+∠DMC=100°+50°=150°.
故選A
點(diǎn)評(píng):此題考查了學(xué)生平行四邊形的性質(zhì)以及直角三角形的性質(zhì),同時(shí)還要注意等腰三角形的性質(zhì)在做題中的靈活運(yùn)用,這道題往往會(huì)作為中考時(shí)填空題或選擇題方面的壓軸題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

17、如圖,在平行四邊形ABCD中,EF∥AD,GH∥AB,EF、GH相交于點(diǎn)O,則圖中共有
9
個(gè)平行四邊形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,在平行四邊形ABCD中,∠ABC的平分線交CD于點(diǎn)E,∠ADC的平分線交AB于點(diǎn)F,證明:四邊形DFBE是平行四邊形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,在平行四邊形ABCD中,∠C=60°,BC=6厘米,DC=7厘米.點(diǎn)M是邊AD上一點(diǎn),且DM:AD=1:3.點(diǎn)E、F分別從A、C同時(shí)出發(fā),以1厘米/秒的速度分別沿AB、CB向點(diǎn)B運(yùn)動(dòng)(當(dāng)點(diǎn)F運(yùn)動(dòng)到點(diǎn)B時(shí),點(diǎn)E隨之停止運(yùn)動(dòng)),EM、CD精英家教網(wǎng)的延長(zhǎng)線交于點(diǎn)P,F(xiàn)P交AD于點(diǎn)Q.設(shè)運(yùn)動(dòng)時(shí)間為x秒,線段PC的長(zhǎng)為y厘米.
(1)求y與x之間函數(shù)關(guān)系式,并寫(xiě)出自變量x的取值范圍;
(2)當(dāng)x為何值時(shí),PF⊥AD?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,在平行四邊形ABCD中,AB=2
2
,AO=
3
,OB=
5
,則下列結(jié)論中不正確的是( 。
A、AC⊥BD
B、四邊形ABCD是菱形
C、△ABO≌△CBO
D、AC=BD

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2013•同安區(qū)一模)如圖,在平行四邊形ABCD中,已知∠ODA=90°,AC=10cm,BD=6cm,則AD的長(zhǎng)為
4cm
4cm

查看答案和解析>>

同步練習(xí)冊(cè)答案