【題目】某商品進(jìn)價(jià)為60元,現(xiàn)在的售價(jià)為100元,每周可售出100件.市場(chǎng)調(diào)查發(fā)現(xiàn):每降價(jià)1元,每周可多賣出20件.若設(shè)每件降價(jià)x元(x為整數(shù)),每周的銷量為y件.
(1)請(qǐng)寫出y與x之間的函數(shù)關(guān)系式;
(2)當(dāng)售價(jià)定為多少時(shí),每周的利潤(rùn)最大?最大利潤(rùn)是多少?
【答案】(1);(2)當(dāng)售價(jià)定為83元或82元時(shí)每周利潤(rùn)最大,最大利潤(rùn)為10120元.
【解析】試題分析:(1)設(shè)降價(jià)x元,根據(jù)“銷售量=原銷量+因價(jià)格下降而增加的銷量”可得;
(2)根據(jù)“總利潤(rùn)=單件利潤(rùn)×銷售量”,列出解析式,然后利用配方法求出二次函數(shù)最值得出答案.
試題解析:解:(1)y=20x+100;
(2)設(shè)當(dāng)每件降價(jià)x元時(shí),每周的利潤(rùn)為W元,則:
,
即,
∵-20<0且x為整數(shù),∴當(dāng)x=17或18時(shí),W的值最大為10120,
100-x=83或82.
答:當(dāng)售價(jià)定為83元或82元時(shí)每周利潤(rùn)最大,最大利潤(rùn)為10120元.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知關(guān)于x的方程x2+(2k-1)x+k2-1=0有兩個(gè)實(shí)數(shù)根x1,x2.
(1)求實(shí)數(shù)k的取值范圍;
(2)若x1,x2滿足x12+x22=16+x1x2,求實(shí)數(shù)k的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在數(shù)軸上點(diǎn)O為原點(diǎn),A點(diǎn)表示數(shù)a,B點(diǎn)表示數(shù)b,且a、b滿足|a+2|+|b-4|=0;
(1)點(diǎn)A表示的數(shù)為 ;點(diǎn)B表示的數(shù)為 ;
(2)如果M、N為數(shù)軸上兩個(gè)動(dòng)點(diǎn).點(diǎn)M從點(diǎn)A出發(fā),速度為每秒1個(gè)單位長(zhǎng)度;點(diǎn)N從點(diǎn)B出發(fā),速度為點(diǎn)A的3倍,它們同時(shí)向左運(yùn)動(dòng).
①當(dāng)運(yùn)動(dòng)2秒時(shí),點(diǎn)M、N對(duì)應(yīng)的數(shù)分別是 、 .
②當(dāng)運(yùn)動(dòng)t秒時(shí),點(diǎn)M、N對(duì)應(yīng)的數(shù)分別是 、 .(用含t的式子表示)
③運(yùn)動(dòng)多少秒時(shí),點(diǎn)M、N、O中恰有一個(gè)點(diǎn)為另外兩個(gè)點(diǎn)所連線段的中點(diǎn)?(可以直接寫出答案)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】閱讀以下材料,并按要求完成相應(yīng)的任務(wù).
在初中數(shù)學(xué)課本中重點(diǎn)介紹了提公因式法和運(yùn)用公式法兩種因式分解的方法,其中運(yùn)用公式法即運(yùn)用平方差公式:a2-b2=(a+b)(a-b)和完全平方公式:a2±2ab+b2=(a±b)2進(jìn)行分解因式,能運(yùn)用完全平方公式分解因式的多項(xiàng)式必須是三項(xiàng)式,其中有兩項(xiàng)能寫成兩個(gè)數(shù)(或式)的平方和的形式,另一項(xiàng)是這兩個(gè)數(shù)(或式)的積的2倍.當(dāng)一個(gè)二次三項(xiàng)式不能直接運(yùn)用完全平方公式分解因式時(shí),可應(yīng)用下面方法分解因式,先將多項(xiàng)式ax2+bx+c(a≠0)變形為a(x+m)2+n的形式,我們把這樣的變形方法叫做多項(xiàng)式ax2+bx+c的配方法.再運(yùn)用多項(xiàng)式的配方法及平方差公式能對(duì)一些多項(xiàng)式進(jìn)行分解因式.
例如:x2+8x+7
=x2+8x+16-16+7
=(x+4)2-9
=(x+4+3)(x+4-3)
=(x+7)(x+1)
根據(jù)以上材料,完成相應(yīng)的任務(wù):
(1)利用“多項(xiàng)式的配方法”將x2+2x-3化成a(x+m)2+n的形式為_______;
(2)請(qǐng)你利用上述方法因式分解:
①x2+6x+8;
②x2-6x-7.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,一次函數(shù)y=﹣x+5的圖象與反比例函數(shù)(k≠0)在第一象限的圖象交于A(1,n)和B兩點(diǎn).
(1)求反比例函數(shù)的解析式及點(diǎn)B坐標(biāo);
(2)在第一象限內(nèi),當(dāng)一次函數(shù)y=-x+5的值大于反比例函數(shù)(k≠0)的值時(shí),寫出自變量x的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,⊙O直徑AB和弦CD相交于點(diǎn)E,AE=2,EB=6,∠DEB=30°,求弦CD長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,△ABC中,點(diǎn)O是邊AC上一個(gè)動(dòng)點(diǎn),過(guò)O作直線MN∥BC.設(shè)MN交∠ACB的平分線于點(diǎn)E,交∠ACB的外角平分線于點(diǎn)F.
(1)求證:OE=OF;
(2)若CE=12,CF=5,求OC的長(zhǎng);
(3)當(dāng)點(diǎn)O在邊AC上運(yùn)動(dòng)到什么位置時(shí),四邊形AECF是矩形?并說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知:如圖,在△ABC中,點(diǎn)A的坐標(biāo)為(﹣4,3),點(diǎn)B的坐標(biāo)為(﹣3,1),BC=2,BC∥x軸.
(1)畫(huà)出△ABC關(guān)于y軸對(duì)稱的圖形△A1B1C1;并寫出A1,B1,C1的坐標(biāo);
(2)求以點(diǎn)A、B、B1、A1為頂點(diǎn)的四邊形的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某檢修小組從A地出發(fā),在東西向的馬路上檢修線路,如果規(guī)定向東行駛為正,向西行駛為負(fù),一天中七次行駛紀(jì)錄如下。(單位:km)
(1)求收工時(shí)距A地多遠(yuǎn)?
(2)在第______次紀(jì)錄時(shí)距A地最遠(yuǎn)。
(3)若每千米耗油0.3升,問(wèn)共耗油多少升?
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com