【題目】已知:如圖在直角坐標(biāo)系中,有菱形, 點(diǎn)的坐標(biāo)為,對角線 相交于點(diǎn),雙曲線經(jīng)過點(diǎn),交的延長線于點(diǎn),且,則點(diǎn)的坐標(biāo)為( )

A. B. C. D.

【答案】C

【解析】試題解析:過點(diǎn)CCFx軸于點(diǎn)F,

OBAC=160,A點(diǎn)的坐標(biāo)為(100),

OACF=OBAC=×160=80,菱形OABC的邊長為10,

CF=,

RtOCF中,

OC=10,CF=8,

OF==6,

C6,8),

點(diǎn)D時(shí)線段AC的中點(diǎn),

D點(diǎn)坐標(biāo)為(, ),即(8,4),

雙曲線y=x0)經(jīng)過D點(diǎn),

4=,即k=32,

雙曲線的解析式為:y=x0),

CF=8

直線CB的解析式為y=8,

解得: ,

E點(diǎn)坐標(biāo)為(4,8).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,OACBAD都是等腰直角三角形,∠ACO=ADB=90°,反比例函數(shù)y=在第一象限的圖象經(jīng)過點(diǎn)B,則OACBAD的面積之差SOACSBAD為( 。

A. 36 B. 12 C. 6 D. 3

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在矩形OABC中,點(diǎn)O為原點(diǎn),點(diǎn)A的坐標(biāo)為(0,8),點(diǎn)C的坐標(biāo)為(6,0).拋物線y=﹣x2+bx+c經(jīng)過點(diǎn)A、C,與AB交于點(diǎn)D.

(1)求拋物線的函數(shù)解析式;

(2)點(diǎn)P為線段BC上一個(gè)動(dòng)點(diǎn)(不與點(diǎn)C重合),點(diǎn)Q為線段AC上一個(gè)動(dòng)點(diǎn),AQ=CP,連接PQ,設(shè)CP=m,CPQ的面積為S.

①求S關(guān)于m的函數(shù)表達(dá)式;

②當(dāng)S最大時(shí),在拋物線y=﹣x2+bx+c的對稱軸l上,若存在點(diǎn)F,使△DFQ為直角三角形,請直接寫出所有符合條件的點(diǎn)F的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖某小船準(zhǔn)備從處出發(fā),沿北偏東的方向航行,在規(guī)定的時(shí)間將一批物資運(yùn)往處的貨船上,后考慮這條航線可能會(huì)因退潮而使小船擱淺,決定改變航線,從處出發(fā)沿正東方向航行海里到達(dá)處,再由處沿北偏東的方向航行到達(dá)處.

(1)小船由經(jīng)到達(dá)走了多少海里(結(jié)果精確到海里);

(2)為了按原定時(shí)間到達(dá)處的貨船上,小船提速,每小時(shí)增加海里,求小船原定的速度(結(jié)果精確到海里/時(shí)).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在ABC中,D、E分別是ABAC的中點(diǎn),BE=2DE,延長DE到點(diǎn)F,使得EF=BE,連接CF

1)求證:四邊形BCFE是菱形;

2)若CE=4BCF=120°,求菱形BCFE的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系 中,函數(shù)的圖象與直線交于點(diǎn)A(3,m).

(1)求k、m的值;

(2)已知點(diǎn)P(n,n)(n>0),過點(diǎn)P作平行于軸的直線,交直線y=x-2于點(diǎn)M,過點(diǎn)P作平行于y軸的直線,交函數(shù) 的圖象于點(diǎn)N.

①當(dāng)n=1時(shí),判斷線段PM與PN的數(shù)量關(guān)系,并說明理由;

②若PN≥PM,結(jié)合函數(shù)的圖象,直接寫出n的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知正方形ABCD的邊長為4,EAB的中點(diǎn),FAD上一點(diǎn),且AF=AD,試判斷△EFC的形狀.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知二次函數(shù)y=ax2+bx+c(a≠0)的圖象如圖所示有下列4個(gè)結(jié)論:①abc>0;②b<a+c;③4a+2b+c>0;④a+b>m(am+b)(m≠1的實(shí)數(shù)),其中正確結(jié)論的個(gè)數(shù)為( 。

A. 0 B. 1 C. 2 D. 3

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABD△ACE中,有下列四個(gè)等式:①AB=AC;②AD=AE③∠1=∠2;④BD=CE.以其中三個(gè)條件為題設(shè),填入已知欄中,一個(gè)論斷為結(jié)論,填入下面求證欄中,使之組成一個(gè)真命題,并寫出證明過程.

已知:

求證:

證明:

查看答案和解析>>

同步練習(xí)冊答案