【題目】小明有黑色、白色、藍(lán)色西服各一件,有紅色、黃色領(lǐng)帶各一條,從中分別取一件西服和一條領(lǐng)帶,則小明穿黑色西服打紅色領(lǐng)帶的概率是

【答案】
【解析】解:列表得:

(黑,黃) (白,黃) (藍(lán),黃)

(黑,紅) (白,紅) (藍(lán),紅)

∴一共有6種情況,∴小明穿黑色西服打紅色領(lǐng)帶的概率是


【考點(diǎn)精析】認(rèn)真審題,首先需要了解列表法與樹狀圖法(當(dāng)一次試驗(yàn)要設(shè)計(jì)三個(gè)或更多的因素時(shí),用列表法就不方便了,為了不重不漏地列出所有可能的結(jié)果,通常采用樹狀圖法求概率),還要掌握概率公式(一般地,如果在一次試驗(yàn)中,有n種可能的結(jié)果,并且它們發(fā)生的可能性都相等,事件A包含其中的m中結(jié)果,那么事件A發(fā)生的概率為P(A)=m/n)的相關(guān)知識(shí)才是答題的關(guān)鍵.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,拋物線y=ax2+ x+1(a≠0)與x軸交于A,B兩點(diǎn),其中點(diǎn)B坐標(biāo)為(2,0).

(1)求拋物線的解析式和點(diǎn)A的坐標(biāo);
(2)如圖1,點(diǎn)P是直線y=﹣x上的動(dòng)點(diǎn),當(dāng)直線OP平分∠APB時(shí),求點(diǎn)P的坐標(biāo);
(3)如圖2,在(2)的條件下,點(diǎn)C是直線BP上方的拋物線上的一個(gè)動(dòng)點(diǎn),過(guò)點(diǎn)C作y軸的平行線,交直線BP于點(diǎn)D,點(diǎn)E在直線BP上,連結(jié)CE,以CD為腰的等腰△CDE的面積是否存在最大值?若存在,求出這個(gè)最大值;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,射線AB∥射線CD,∠CAB與∠ACD的平分線交于點(diǎn)EAC4,點(diǎn)P是射線AB上的一動(dòng)點(diǎn),連結(jié)PE并延長(zhǎng)交射線CD于點(diǎn)Q.給出下列結(jié)論:①ACE是直角三角形;②S四邊形APQC2SACE;③設(shè)APx,CQy,則y關(guān)于x的函數(shù)表達(dá)式是y=﹣x+40≤x≤4),其中正確的是( 。

A. ①②③B. ①②C. ①③D. ②③

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】1)如圖1,在ABC中,∠BAC90°ABAC,直線m經(jīng)過(guò)點(diǎn)A,BD⊥直線mCE⊥直線m,垂足分別為DE.求證:DEBD+CE;

2)如圖2,將(1)中的條件改為:在ABC中,ABAC,D,A,E三點(diǎn)都在直線m上,并且有∠BDA=∠AEC=∠BACa,其中a為任意銳角或鈍角,請(qǐng)問(wèn)結(jié)論DEBD+CE是否成立?若成立,請(qǐng)你給出證明;若不成立,請(qǐng)說(shuō)明理由;

3)如圖3,在(2)的條件下,若a120°,且ACF為等邊三角形,試判斷DEF的形狀,并說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在等邊△ABC中,O為BC邊上一點(diǎn),E為AC邊上一點(diǎn),且∠ADE=60°,BD=3.CE=2,則AB的長(zhǎng)為

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知圓錐的母線長(zhǎng)為6cm,底面圓的半徑為3cm,則此圓錐側(cè)面展開圖的圓心角的度數(shù)是

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,AB是⊙O的直徑,弦CD⊥AB于點(diǎn)E,點(diǎn)M在⊙O上,MD恰好經(jīng)過(guò)圓心O,連接MB.

(1)若CD=16,BE=4,求⊙O的直徑;
(2)若∠M=∠D,求∠D的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,拋物線y=﹣x2+3x+4與x軸交于A、B兩點(diǎn),與y軸交于點(diǎn)C,點(diǎn)D在拋物線上且橫坐標(biāo)為3.

(1)求A、B、C、D的坐標(biāo);
(2)求∠BCD的度數(shù);
(3)求tan∠DBC的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】甲、乙兩家快遞公司攬件員(攬收快件的員工)的日工資方案如下:

甲公司為基本工資+攬件提成,其中基本工資為70/日,每攬收一件提成2元;

乙公司無(wú)基本工資,僅以攬件提成計(jì)算工資.若當(dāng)日攬件數(shù)不超過(guò)40,每件提成4元;若當(dāng)日攪件數(shù)超過(guò)40,超過(guò)部分每件多提成2元.

如圖是今年四月份甲公司攬件員人均攬件數(shù)和乙公司攪件員人均攬件數(shù)的條形統(tǒng)計(jì)圖:

(1)現(xiàn)從今年四月份的30天中隨機(jī)抽取1天,求這一天甲公司攬件員人均攬件數(shù)超過(guò)40(不含40)的概率;

(2)根據(jù)以上信息,以今年四月份的數(shù)據(jù)為依據(jù),并將各公司攬件員的人均攬件數(shù)視為該公司各攬件員的

攬件數(shù),解決以下問(wèn)題:

①估計(jì)甲公司各攬件員的日平均件數(shù);

②小明擬到甲、乙兩家公司中的一家應(yīng)聘攬件員,如果僅從工資收入的角度考慮,請(qǐng)利用所學(xué)的統(tǒng)計(jì)知識(shí)幫他選擇,井說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案