22、當(dāng)m為何值時,方程x2-(m+2)x+m2=0的兩根之和與兩根之積相等.
分析:首先根據(jù)一元二次方程根與系數(shù)的關(guān)系用m分別表示兩根之和與兩根之積,然后根據(jù)題意可以得到關(guān)于m的方程,解方程即可求解.
解答:解:設(shè)方程的兩根為x1,x2,
∴x1+x2=m+2,
x1•x2=m2,
而方程x2-(m+2)x+m2=0的兩根之和與兩根之積相等,
∴m+2=m2,
∴m2-m-2=0,
∴m=2或m=-1.
點評:此題主要考查了一元二次方程的根與系數(shù)的關(guān)系,解題的關(guān)鍵利用根與系數(shù)的關(guān)系得到關(guān)于m的方程,然后解方程即可解決問題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

已知關(guān)于x的方程x2+(m+2)x+2m-1=0(m為實數(shù)),
(1)求證:方程有兩個不相等的實數(shù)根;
(2)當(dāng)m為何值時,方程的兩根互為相反數(shù)并求出此時方程的解.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

當(dāng)a為何值時,方程
12
(x-a)=2-x
的解不大于5.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

21、當(dāng)m為何值時,方程3(2x+1)=5x-4和方程2(x+1)-m=-2(x-2)的解相同.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(1)當(dāng)a為何值時,方程
x-2
x-3
=2-
a
3-x
有増根?
(2)當(dāng)a為何值時,方程
3a+1
x+1
=a
無解?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知關(guān)于x的方程
x
2
+m=
mx-m
6
,
(1)當(dāng)m為何值時,方程的解為x=4;
(2)當(dāng)m=4時,求方程的解.

查看答案和解析>>

同步練習(xí)冊答案