【題目】已知:如圖,菱形的周長為,對(duì)角線,直線從點(diǎn)出發(fā),以1的速度沿向右運(yùn)動(dòng),直到過點(diǎn)為止.在運(yùn)動(dòng)過程中,直線始終垂直于,若平移過程中直線掃過的面積為(),直線的運(yùn)動(dòng)時(shí)間為,則下列最能反映與之間函數(shù)關(guān)系的圖象是( )
A.B.
C.D.
【答案】B
【解析】
連接交于點(diǎn),令直線與或交于點(diǎn),與或交于點(diǎn),則,根據(jù)菱形的周長為,即可推出,根據(jù)勾股定理求出OD=OB,然后分情況討論即可.
解:連接交于點(diǎn),令直線與或交于點(diǎn),與或交于點(diǎn),∵菱形的周長為,
∴,
∵,
∴,
由勾股定理得,分兩種情況:
(1)當(dāng)時(shí),如圖1,
∵,
∴∽,
∴,,,
∴
函數(shù)圖象是開口向上,對(duì)稱軸為軸且位于對(duì)稱軸右側(cè)的拋物線的一部分;
(2)當(dāng)時(shí),如圖2,
∵,
∴∽,
∴,,,
函數(shù)圖象是開口向下,對(duì)稱軸為直線且位于對(duì)稱軸左側(cè)的拋物線的一部分;
故選B.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,一次函數(shù)的圖象與反比例函數(shù)的圖象在第一象限交于點(diǎn),與軸的負(fù)半軸交于點(diǎn),且.
(1)求函數(shù)和的表達(dá)式.
(2)已知直線與軸相交于點(diǎn)在第一象限內(nèi),求反比例函數(shù)的圖象上一點(diǎn),使得.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知二次函數(shù)y=ax2+bx+c(a≠0)的圖象如圖所示,并且關(guān)于x的一元二次方程ax2+bx+c﹣m=0有兩個(gè)不相等的實(shí)數(shù)根,下列結(jié)論:①b2﹣4ac<0;②abc>0;③a﹣b+c<0;④m>﹣2,其中,正確的個(gè)數(shù)有( 。
A. 1 B. 2 C. 3 D. 4
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,利用一個(gè)直角墻角修建一個(gè)梯形儲(chǔ)料場ABCD,其中∠C=120°.若新建墻BC與CD總長為12m,則該梯形儲(chǔ)料場ABCD的最大面積是( )
A.18m2B.m2C.m2D.m2
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面坐標(biāo)系中,第1個(gè)正方形ABCD的位置如圖所示,點(diǎn)A的坐標(biāo)為(3,0),點(diǎn)D的坐標(biāo)為(0,4),延長CB交x軸于點(diǎn)A1,作第2個(gè)正方形A1B1C1C,延長C1B1交x軸于點(diǎn)A2;作第3個(gè)正方形A2B2C2C1,…按這樣的規(guī)律進(jìn)行下去,第5個(gè)正方形的邊長為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】二次函數(shù)(,是常數(shù))中,自變量與函數(shù)的對(duì)應(yīng)值如下表:
-1 | 0 | 1 | 2 | 3 | |||||
1 | 2 | 1 | -2 |
(1)判斷二次函數(shù)圖象的開口方向,并寫出它的頂點(diǎn)坐標(biāo);
(2)一元二次方程(,是常數(shù))的兩個(gè)根,的取值范圍是下列選項(xiàng)中的哪一個(gè) .
A. B.
C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】要修一個(gè)圓形噴水池,在池中心豎直安裝一根水管,水管的頂端安一個(gè)噴水頭,使噴出的拋物線形水柱在與池中心的水平距離為1m處達(dá)到最高,高度為3m,水柱落地處離池中心3m,水管應(yīng)多長?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知直線y=-2x+3與拋物線y=x2相交于A,B兩點(diǎn),O為坐標(biāo)原點(diǎn).
(1)求點(diǎn)A和B的坐標(biāo);
(2)連結(jié)OA,OB,求△OAB的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(1)問題發(fā)現(xiàn)
如圖1,在Rt△ABC中,∠A=90°,=1,點(diǎn)P是邊BC上一動(dòng)點(diǎn)(不與點(diǎn)B重合),∠PAD=90°,∠APD=∠B,連接 CD.
(1)①求的值;②求∠ACD的度數(shù).
(2)拓展探究
如圖 2,在Rt△ABC中,∠A=90°,=k.點(diǎn)P是邊BC上一動(dòng)點(diǎn)(不與點(diǎn)B重合),∠PAD=90°,∠APD=∠B,連接CD,請(qǐng)判斷∠ACD與∠B 的數(shù)量關(guān)系以及PB與CD之間的數(shù)量關(guān)系,并說明理由.
(3)解決問題
如圖 3,在△ABC中,∠B=45°,AB=4,BC=12,P 是邊BC上一動(dòng)點(diǎn)(不與點(diǎn)B重合),∠PAD=∠BAC,∠APD=∠B,連接CD.若 PA=5,請(qǐng)直接寫出CD的長.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com