分析 (1)根據(jù)BE,CF是△ABC的中線可得EF是△ABC的中位線,P,Q分別是BG,CG的中點(diǎn)可得PQ是△BCG的中位線,根據(jù)三角形中位線定理可得EF∥BC且EF=$\frac{1}{2}$BC,PQ∥BC且PQ=$\frac{1}{2}$BC,進(jìn)而可得EF∥PQ且EF=PQ.根據(jù)一組對(duì)邊平行且相等的四邊形是平行四邊形可得結(jié)論;
(2)根據(jù)平行四邊形的性質(zhì)可得GE=GP,再根據(jù)P是BG的中點(diǎn)可得BG=2PG,利用等量代換可得答案.
解答 (1)證明:∵BE,CF是△ABC的中線,
∴EF是△ABC的中位線,
∴EF∥BC且EF=$\frac{1}{2}$BC.
∵P,Q分別是BG,CG的中點(diǎn),
∴PQ是△BCG的中位線,
∴PQ∥BC且PQ=$\frac{1}{2}$BC,
∴EF∥PQ且EF=PQ.
∴四邊形EFPQ是平行四邊形.
(2)解:BG=2GE.
∵四邊形EFPQ是平行四邊形,
∴GP=GE,
∵P是BG中點(diǎn),
∴BG=2PG,
∴BG=2GE.
故答案為:BG=2GE.
點(diǎn)評(píng) 此題主要考查了三角形中位線定理,以及平行四邊形的判定與性質(zhì),關(guān)鍵是掌握三角形的中位線平行于第三邊,并且等于第三邊的一半.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
A. | (2,1) | B. | (-2,1) | C. | (-2,-1) | D. | (2,-1) |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
A. | 5個(gè) | B. | 4個(gè) | C. | 3個(gè) | D. | 2個(gè) |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
A. | $\left\{\begin{array}{l}{x=2}\\{y=0}\end{array}\right.$ | B. | $\left\{\begin{array}{l}{x=0}\\{y=2}\end{array}\right.$ | C. | $\left\{\begin{array}{l}{x=-2}\\{y=0}\end{array}\right.$ | D. | $\left\{\begin{array}{l}{x=0}\\{y=-2}\end{array}\right.$ |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
A. | 50.30千克 | B. | 49.51千克 | C. | 49.80千克 | D. | 50.70千克 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
A. | 1個(gè) | B. | 2個(gè) | C. | 3個(gè) | D. | 4個(gè) |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com