如圖,⊙的直徑過弦的中點,∠°,則∠等于
A.°B.°C.°D.°
C
欲求∠DCF,又已知一圓心角,可利用圓周角與圓心角的關系求解.
解:∵⊙O的直徑CD過弦EF的中點G,
∴ED=GF
(垂徑定理),
∴∠DCF=∠EOD(等弧所對的圓周角是圓心角的一半),
∴∠DCF=20°.
故選 C.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源:不詳 題型:解答題

(本題滿分10分)如圖,在△ABC中,∠C= 90°,以AB上一點O為圓心,
OA長為半徑的圓與BC相切于點D,分別交ACAB于點E、F
(1)若AC=6,AB= 10,求⊙O的半徑;
(2)連接OE、EDDF、EF.若四邊形BDEF是平行四邊形,試判斷四邊形OFDE的形狀,并說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

(2011•湛江)如圖,在Rt△ABC中,∠C=90°,點D是AC的中點,且∠A+∠CDB=90°,過點A,D作⊙O,使圓心O在AB上,⊙O與AB交于點E.
(1)求證:直線BD與⊙O相切;
(2)若AD:AE=4:5,BC=6,求⊙O的直徑.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:填空題

如圖,從⊙O外一點A引圓的切線AB,切點為B,連接AO并延長交圓于點C
連接BC.若∠A=26°,則∠ACB的度數(shù)為   
 

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

(本小題滿分5分)已知:如圖,在中,,點上,以為圓心,長為半徑的圓與分別交于點,且
(1)判斷直線的位置關系,并證明你的結論;
(2)若,=,求的值.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:填空題

已知:如圖,,為⊙O的弦,點上,若,,則的長為                  .

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

已知:AB是⊙O的弦,OD⊥AB于M交⊙O于點D,CB⊥AB交AD的延長線于C.

(1)求證:AD=DC;
(2)過D作⊙O的切線交BC于E,若DE=2,CE=1,求⊙O的半徑.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:單選題

如圖,點B是⊙O的半徑OA的中點,且CD⊥OA于B,則tan∠CPD的值為(   )
A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

在Rt△ACB中,∠C=90°,AC=3cm,BC=4cm,以BC為直徑作⊙O交AB于點D,求線段AD的長度.

查看答案和解析>>

同步練習冊答案