已知方程x2+(a-3)x+3=0在實數(shù)范圍內恒有解,并且恰有一個解大于1小于2,a的取值范圍是 .
【答案】
分析:在與一元二次方程有關的求值問題中,必須滿足下列條件:
(1)二次項系數(shù)不為零;
(2)在恒有解下必須滿足△=b
2-4ac≥0.
解答:解:設f(x)=x
2+(a-3)x+3,問題等價于 f(x)有一個零點在(1,2)內
根據二次方程根的分布,這等價于 f(1)•f(2)<0
即[1+(a-3)+3]•[4+(a-3)2+3]<0,
也即(a+1)•(2a+1)<0
解得-1<a<-
.
當△=0時,即b
2-4ac=0,
∴(a-3)2-12=0,
∴a=2
+3或-2
+3,
∵恰有一個解大于1小于2,
∵當a=2
+3時,x=-
(舍)
∴當a=2
+3不合題意,
當a=3-2
時,x=
,符合題意,
故答案為:-1<a<-
或a=3-2
.
點評:主要考查了二次函數(shù)的性質與一元二次方程之間的關系.這些性質和規(guī)律要求學生熟練掌握.