如圖,已知四邊形ABCD為平行四邊形,AE⊥BD于E,CF⊥BD于F.
(1)求證:BE=DF;
(2)若 M、N分別為邊AD、BC上的點(diǎn),且DM=BN,試判斷四邊形MENF的形狀(不必說明理由).

【答案】分析:(1)根據(jù)平行四邊形的性質(zhì)和已知條件證明△ABE≌△CDF即可得到BE=DF;
(2)根據(jù)平行四邊形的判定方法:有一組對邊平行且相等的四邊形為平行四邊形判定四邊形MENF的形狀.
解答:解:(1)∵四邊形ABCD是平行四邊形,
∴AB=CD,AB∥CD,
∴∠ABD=∠CDB,
∵AE⊥BD于E,CF⊥BD于F,
∴∠AEB=∠CFD=90°,
∴△ABE≌△CDF(AAS),
∴BE=DF;

(2)四邊形MENF是平行四邊形.
證明:由(1)可知:BE=DF,
∵四邊形ABCD為平行四邊形,
∴AD∥BC,
∴∠MDB=∠NBD,
∵DM=BN,
∴△DMF≌△BNE,
∴NE=MF,∠MFD=∠NEB,
∴∠MFE=∠NEF,
∴MF∥NE,
∴四邊形MENF是平行四邊形.
點(diǎn)評:本題考查了平行四邊形的性質(zhì)以及平行四邊形的判定和全等三角形的判定以及全等三角形的性質(zhì).
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

15、如圖,已知四邊形ABCD是等腰梯形,AB=DC,AD∥BC,PB=PC.求證:PA=PD.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,已知四邊形ABCD內(nèi)接于⊙O,A是
BDC
的中點(diǎn),AE⊥AC于A,與⊙O及CB精英家教網(wǎng)的延長線分別交于點(diǎn)F、E,且
BF
=
AD
,EM切⊙O于M.
(1)求證:△ADC∽△EBA;
(2)求證:AC2=
1
2
BC•CE;
(3)如果AB=2,EM=3,求cot∠CAD的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•梧州)如圖,已知:AB∥CD,BE⊥AD,垂足為點(diǎn)E,CF⊥AD,垂足為點(diǎn)F,并且AE=DF.
求證:四邊形BECF是平行四邊形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2010年湖南常德市初中畢業(yè)學(xué)業(yè)考試數(shù)學(xué)試卷 題型:047

如圖,已知四邊形AB∥CD是菱形,DEAB,DFBC.求證△ADE≌△CDF

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,已知四邊形AB∥CD是菱形,DE∥AB,DFBC.求證

 


查看答案和解析>>

同步練習(xí)冊答案