【題目】已知A(2,0),B(6,0),CB⊥x軸于點B,連接AC
畫圖操作:
(1)在y正半軸上求作點P,使得∠APB=∠ACB(尺規(guī)作圖,保留作圖痕跡)
理解應用:
(2)在(1)的條件下,
①若tan∠APB ,求點P的坐標
②當點P的坐標為 時,∠APB最大
拓展延伸:
(3)若在直線yx+4上存在點P,使得∠APB最大,求點P的坐標
【答案】(1)圖形見解析(2)(0,2),(0,4)(0,2)(3)(,)
【解析】試題分析:(1)以AC為直徑畫圓交y軸于P,連接PA、PB,∠PAB即為所求;
(2)①由題意AC的中點K(4,4),以K為圓心AK為半徑畫圓,交y軸于P和P′,易知P(0,2),P′(0,6);
②當⊙K與y軸相切時,∠APB的值最大,(3)如圖3中,當經過AB的園與直線相切時,∠APB最大.想辦法求出點P坐標即可解決問題;
試題解析:解:(1)∠APB如圖所示;
(2)①如圖2中,∵∠APB=∠ACB,∴tan∠ACB=tan∠APB==.∵A(2,0),B(6,0),∴AB=4,BC=8,∴C(6,8),∴AC的中點K(4,4),以K為圓心AK為半徑畫圓,交y軸于P和P′,易知P(0,2),P′(0,6).
②當⊙K與y軸相切時,∠APB的值最大,此時AK=PK=4,AC=8,∴BC==4,∴C(6,4),∴K(4,2),∴P(0,2).故答案為:(0,2).
(3)如圖3中,當經過AB的園與直線相切時,∠APB最大.∵直線y=x+4交x軸于M(﹣3,0),交y軸于N(0,4).∵MP是切線,∴MP2=MAMB,∴MP=3,作PK⊥OA于K.∵ON∥PK,∴==,∴==,∴PK=,MK=,∴OK=﹣3,∴P(﹣3,).
科目:初中數(shù)學 來源: 題型:
【題目】張師傅駕車從甲地去乙地,途中在加油站加了一次油,加油時,車載電腦顯示還能行駛50千米.假設加油前、后汽車都以100千米/小時的速度勻速行駛,已知油箱中剩余油量y(升)與行駛時間t(小時)之間的關系如圖所示.
(1)求張師傅加油前油箱剩余油量y(升)與行駛時間t(小時)之間的關系式;
(2)求出a的值;
(3)求張師傅途中加油多少升?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】工廠加工某種茶葉,計劃一周生產千克,平均每天生產千克,由于各種原因實際每天產量與計劃量相比有出入,某周七天的生產情況記錄如下(超產為正、減產為負):
,,,,,,.
()這一周的實際產量是多少千克?
()該廠規(guī)定工人工資參照平均產量計發(fā),每千克元.若超產,則超產的部分每千克元;若低于平均產量,按實際產量計發(fā),而且每少千克扣除元,那么該工廠工人這一周的工資總額是多少?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】情境觀察:
如圖1,△ABC中,AB=AC,∠BAC=45°,CD⊥AB,AE⊥BC,垂足分別為D、E,CD與AE交于點F.
①寫出圖1中所有的全等三角形 ;
②線段AF與線段CE的數(shù)量關系是 .
問題探究:
如圖2,△ABC中,∠BAC=45°,AB=BC,AD平分∠BAC,AD⊥CD,垂足為D,AD與BC交于點E.
求證:AE=2CD.
拓展延伸:
如圖3,△ABC中,∠BAC=45°,AB=BC,點D在AC上,∠EDC= ∠BAC,DE⊥CE,垂足為E,DE與BC交于點F.求證:DF=2CE.
要求:請你寫出輔助線的作法,并在圖3中畫出輔助線,不需要證明.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】重慶市的重大惠民工程﹣﹣公租房建設已陸續(xù)竣工,計劃10年內解決低收入人群的住房問題,前6年,每年竣工投入使用的公租房面積y(單位:百萬平方米),與時間x的關系是y=x+5,(x單位:年,1≤x≤6且x為整數(shù));后4年,每年竣工投入使用的公租房面積y(單位:百萬平方米),與時間x的關系是y=-x+(x單位:年,7≤x≤10且x為整數(shù)).假設每年的公租房全部出租完.另外,隨著物價上漲等因素的影響,每年的租金也隨之上調,預計,第x年投入使用的公租房的租金z(單位:元/m2)與時間x(單位:年,1≤x≤10且x為整數(shù))滿足一次函數(shù)關系如下表:
z(元/m2) | 50 | 52 | 54 | 56 | 58 | … |
x(年) | 1 | 2 | 3 | 4 | 5 | … |
(1)求出z與x的函數(shù)關系式;
(2)求政府在第幾年投入的公租房收取的租金最多,最多為多少百萬元;
(3)若第6年竣工投入使用的公租房可解決20萬人的住房問題,政府計劃在第10年投入的公租房總面積不變的情況下,要讓人均住房面積比第6年人均住房面積提高a%,這樣可解決住房的人數(shù)將比第6年減少1.35a%,求a的值.
(參考數(shù)據(jù):,,)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,矩形ABCD中,AB=8,BC=6.點E在邊AB上,點F在邊CD上,點G、H在對角線AC上,若四邊形EGFH是菱形,則AE的長是_________________。
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】下表給出了某班6名同學的身高情況(單位:cm).
學生 | A | B | C | D | E | F | |
身高(單位:cm) | 165 | ____ | 166 | ____ | ____ | 172 | |
身高與班級平 | 均身高的差值) | -1 | +2 | ____ | -3 | +4 | ____ |
(1)完成表中空的部分;
(2)他們6人中最高身高比最矮身高高多少?
(3)如果身高達到或超過平均身高時叫達標身高,那么這6名同學身高的達標率是多少?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】初二年級教師對試卷講評課中學生參與的深度與廣度進行評價調查,其評價項目為主動質疑、獨立思考、專注聽講、講解題目四項.評價組隨機抽取了若干名初二學生的參與情況,繪制成如圖所示的頻數(shù)分布直方圖和扇形統(tǒng)計圖(均不完整),請根據(jù)圖中所給信息解答下列問題:
(1)在這次評價中,一共抽查了 名學生;
(2)在扇形統(tǒng)計圖中,項目“主動質疑”所在的扇形的圓心角的度數(shù)為 度;
(3)請將頻數(shù)分布直方圖補充完整;
(4)如果全市有6000名初二學生,那么在試卷評講課中,“獨立思考”的初二學生約有多少人?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】現(xiàn)用a根長度相同的火柴棒,按如圖①擺放時可擺成m個正方形,按如圖②擺放時可擺放2n個正方形.
(1)如圖①,當m=2時,a= ,如圖②,當n=3時,a= ;
(2) m與n之間有何數(shù)量關系,請你寫出來并說明理由;
(3)現(xiàn)有56根火柴棒,現(xiàn)用若干根火柴棒擺成圖①的形狀后,剩下的火柴棒剛好可以擺成圖②的形狀。請你直接寫出一種擺放方法,并通過計算驗證你的結論.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com