如圖,在平面直角坐標(biāo)系中,已知A(8,0),B(0,6),⊙M經(jīng)過原點(diǎn)O及點(diǎn)A、B.
(1)求⊙M的半徑及圓心M的坐標(biāo);
(2)過點(diǎn)B作⊙M的切線l,求直線l的解析式;
(3)∠BOA的平分線交AB于點(diǎn)N,交⊙M于點(diǎn)E,求點(diǎn)N的坐標(biāo)和線段OE的長.
考點(diǎn):
圓的綜合題.
專題:
綜合題.
分析:
(1)根據(jù)圓周角定理∠AOB=90°得AB為⊙M的直徑,則可得到線段AB的中點(diǎn)即點(diǎn)M的坐標(biāo),然后利用勾股定理計(jì)算出AB=10,則可確定⊙M的半徑為5;
(2)點(diǎn)B作⊙M的切線l交x軸于C,根據(jù)切線的性質(zhì)得AB⊥BC,利用等角的余角相等得到∠BAO=∠CBO,然后根據(jù)相似三角形的判定方法有Rt△ABO∽Rt△BCO,所以=,可解得OC=,則C點(diǎn)坐標(biāo)為(﹣,0),最后運(yùn)用待定系數(shù)法確定l的解析式;
(3)作ND⊥x軸,連結(jié)AE,易得△NOD為等腰直角三角形,所以ND=OD,ON=ND,再利用ND∥OB得到△ADN∽△AOB,則ND:OB=AD:AO,即ND:6=(8﹣ND):8,解得ND=,所以O(shè)D=,ON=,即可確定N點(diǎn)坐標(biāo);由于△ADN∽△AOB,利用ND:OB=AN:AB,可求得AN=,則BN=10﹣=,然后利用圓周角定理得∠OBA=OEA,∠BOE=∠BAE,所以△BON∽△EAN,再利用相似比可求出ME,最后由OE=ON+NE計(jì)算即可.
解答:
解:(1)∵∠AOB=90°,
∴AB為⊙M的直徑,
∵A(8,0),B(0,6),
∴OA=8,OB=6,
∴AB==10,
∴⊙M的半徑為5;圓心M的坐標(biāo)為((4,3);
(2)點(diǎn)B作⊙M的切線l交x軸于C,如圖,
∵BC與⊙M相切,AB為直徑,
∴AB⊥BC,
∴∠ABC=90°,
∴∠CBO+∠ABO=90°,
而∠BAO=∠ABO=90°,
∴∠BAO=∠CBO,
∴Rt△ABO∽Rt△BCO,
∴=,即=,解得OC=,
∴C點(diǎn)坐標(biāo)為(﹣,0),
設(shè)直線BC的解析式為y=kx+b,
把B(0,6)、C點(diǎn)(﹣,0)分別代入,
解得,
∴直線l的解析式為y=x+6;
(3)作ND⊥x軸,連結(jié)AE,如圖,
∵∠BOA的平分線交AB于點(diǎn)N,
∴△NOD為等腰直角三角形,
∴ND=OD,
∴ND∥OB,
∴△ADN∽△AOB,
∴ND:OB=AD:AO,
∴ND:6=(8﹣ND):8,解得ND=,
∴OD=,ON=ND=,
∴N點(diǎn)坐標(biāo)為(,);
∵△ADN∽△AOB,
∴ND:OB=AN:AB,即:6=AN:10,解得AN=,
∴BN=10﹣=,
∵∠OBA=OEA,∠BOE=∠BAE,
∴△BON∽△EAN,
∴BN:NE=ON:AN,即:NE=:,解得NE=,
∴OE=ON+NE=+=7.
點(diǎn)評:
本題考查了圓的綜合題:掌握切線的性質(zhì)、圓周角定理及其推論;學(xué)會(huì)運(yùn)用待定系數(shù)法求函數(shù)的解析式;熟練運(yùn)用勾股定理和相似比進(jìn)行幾何計(jì)算.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
BD |
AB |
5 |
8 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
5 |
29 |
5 |
29 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
k |
x |
k |
x |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com