如圖,直線l經(jīng)過點(diǎn)M(3,0),且平行于y軸,與拋物線y=ax2交于點(diǎn)N,若S△OMN=9,則a的值是( 。
A.
2
3
B.-
2
3
C.
1
3
D.-
1
3

∵直線l經(jīng)過點(diǎn)M(3,0),且平行于y軸,與拋物線y=ax2交于點(diǎn)N,
∴點(diǎn)N的橫坐標(biāo)為3,
代入拋物線方程得:y=9a,即MN=-9a.
∵S△OMN=
1
2
OM•MN=9,OM=3,MN=-9a,
解得:a=-
2
3

故選:B.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

已知:拋物線y=ax2+bx+c與x軸交于A、B兩點(diǎn),與y軸交于點(diǎn)C.其中點(diǎn)A在x軸的負(fù)半軸上,點(diǎn)C在y軸的負(fù)半軸上,線段OA、OC的長(zhǎng)(OA<OC)是方程x2-5x+4=0的兩個(gè)根,且拋物線的對(duì)稱軸是直線x=1.
(1)求A、B、C三點(diǎn)的坐標(biāo);
(2)求此拋物線的解析式;
(3)若點(diǎn)D是線段AB上的一個(gè)動(dòng)點(diǎn)(與點(diǎn)A、B不重合),過點(diǎn)D作DEBC交AC于點(diǎn)E,連接CD,設(shè)BD的長(zhǎng)為m,△CDE的面積為S,求S與m的函數(shù)關(guān)系式,并寫出自變量m的取值范圍.S是否存在最大值?若存在,求出最大值并求此時(shí)D點(diǎn)坐標(biāo);若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,一次函數(shù)y=-4x-4的圖象與x軸、y軸分別交于A、C兩點(diǎn),拋物線y=
4
3
x2+bx+c的圖象經(jīng)過A、C兩點(diǎn),且與x軸交于點(diǎn)B.
(1)求拋物線的函數(shù)表達(dá)式;
(2)設(shè)拋物線的頂點(diǎn)為D,求四邊形ABDC的面積;
(3)作直線MN平行于x軸,分別交線段AC、BC于點(diǎn)M、N.問在x軸上是否存在點(diǎn)P,使得△PMN是等腰直角三角形?如果存在,求出所有滿足條件的P點(diǎn)的坐標(biāo);如果不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

在平面直角坐標(biāo)系中,已知A(-4,0),B(1,0),且以AB為直徑的圓交y軸的正半軸于點(diǎn)C(0,2),過點(diǎn)C作圓的切線交x軸于點(diǎn)D.
(1)求過A,B,C三點(diǎn)的拋物線的解析式;
(2)求點(diǎn)D的坐標(biāo);
(3)設(shè)平行于x軸的直線交拋物線于E,F(xiàn)兩點(diǎn),問:是否存在以線段EF為直徑的圓,恰好與x軸相切?若存在,求出該圓的半徑;若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,在平面直角坐標(biāo)系中,二次函數(shù)y=x2+bx+c的圖象與x軸交于A、B兩點(diǎn),A點(diǎn)在原點(diǎn)的左側(cè),B點(diǎn)的坐標(biāo)為(3,0),與y軸交于C(0,-3)點(diǎn),點(diǎn)P是直線BC下方的拋物線上一動(dòng)點(diǎn).
(1)求這個(gè)二次函數(shù)的解析式;
(2)當(dāng)點(diǎn)P運(yùn)動(dòng)到什么位置時(shí),四邊形ABPC的面積最大,并求出此時(shí)P點(diǎn)的坐標(biāo)和四邊形ABPC的最大面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

在平面直角坐標(biāo)系xOy中,已知點(diǎn)A(-1,0),B(0,1),C(2,
9
5
).
(Ⅰ)直線l:y=kx+b過A、B兩點(diǎn),求k、b的值;
(Ⅱ)求過A、B、C三點(diǎn)的拋物線Q的解析式;
(Ⅲ)設(shè)(Ⅱ)中的拋物線Q的對(duì)稱軸與x軸相交于點(diǎn)E,那么在對(duì)稱軸上是否存在點(diǎn)F,使⊙F與直線l和x軸同時(shí)相切?若存在,求出點(diǎn)F的坐標(biāo);若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

已知,如圖,拋物線y=x2+px+q與x軸相交于A、B兩點(diǎn),與y軸交于點(diǎn)C,且OA≠OB,OA=OC,設(shè)拋物線的頂點(diǎn)為點(diǎn)P,直線PC與x軸的交點(diǎn)D恰好與點(diǎn)A關(guān)于y軸對(duì)稱.
(1)求p、q的值.
(2)在題中的拋物線上是否存在這樣的點(diǎn)Q,使得四邊形PAQD恰好為平行四邊形?若存在,求出點(diǎn)Q的坐標(biāo);若不存在,請(qǐng)說明理由.
(3)連接PA、AC.問:在直線PC上,是否存在這樣點(diǎn)E(不與點(diǎn)C重合),使得以P、A、E為頂點(diǎn)的三角形與△PAC相似?若存在,求出點(diǎn)E的坐標(biāo);若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

當(dāng)行駛中的汽車撞到物體時(shí),汽車的損壞程度通常用“撞擊影響”來衡量.汽車的撞擊影響I可以用汽車行駛速度v(km/min)來表示,下表是某種型號(hào)的汽車行駛速度與撞擊影響的實(shí)驗(yàn)數(shù)據(jù):
v(km/min)01234
I0281832
(1)請(qǐng)你以上表中各對(duì)數(shù)據(jù)(v,I)作為點(diǎn)的坐標(biāo),嘗試在右圖所示的坐標(biāo)系中畫出I關(guān)于v的函數(shù)圖象.
(2)①填寫下表:
v(km/min)1234
v2
I
________________________
②根據(jù)所填表中數(shù)據(jù)呈現(xiàn)的規(guī)律,猜想出用v表示I的二次函數(shù)的關(guān)系式:______.
③若在一次交通事故中,測(cè)得汽車的撞擊影響I=16.請(qǐng)你計(jì)算此時(shí)汽車的行駛速度為______km/min(精確到0.01km/min)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

已知拋物線y=ax2+bx+c與x軸交于A、B兩點(diǎn)(點(diǎn)B在點(diǎn)A的右側(cè),且AB=8),與y軸交于點(diǎn)C,其中點(diǎn)A在x軸的負(fù)半軸上,點(diǎn)C在y軸的正半軸上,線段OA、OC的長(zhǎng)(OA<OC)是方程x2-14x+48=0的兩個(gè)根.
(1)求此拋物線的解析式;
(2)連接AC、BC,若點(diǎn)E是線段AB上的一個(gè)動(dòng)點(diǎn)(與點(diǎn)A、點(diǎn)B不重合),過點(diǎn)E作EFAC交BC于點(diǎn)F,連接CE,設(shè)AE的長(zhǎng)為m,△CEF的面積為S,求S與m之間的函數(shù)關(guān)系式,并寫出自變量m的取值范圍;
(3)在(2)的基礎(chǔ)上試說明S是否存在最大值,若存在,請(qǐng)求出S的最大值,并求出此時(shí)點(diǎn)E的坐標(biāo),判斷此時(shí)△BCE的形狀;若不存在,請(qǐng)說明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案