以方程x2+3x-4=0的兩個(gè)根為橫、縱坐標(biāo)的點(diǎn),既在正比例函數(shù)y=k1x(k1≠0)的圖像上,又在反比例函數(shù)y=(k2≠0)的圖像上,則k1k2=________.

答案:16或1
提示:

x23x40的兩根為x1=-4x21.當(dāng)x=-4,y1時(shí),k1=-k2=-4,故k1k21,當(dāng)x1y=-4時(shí),k1=-4,k2=-4,∴k1k216


練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

有一個(gè)算式分子都是整數(shù),滿足
(  )
3
+
(  )
5
+
(  )
7
≈1.16,那么你能算出他們的分子依次是哪些數(shù)嗎?
在我們的教科書中選取了一些具體值并將它們代入要解的一元二次方程中,大致估計(jì)出一元二次方程解的范圍,再在這個(gè)范圍內(nèi)逐步加細(xì)賦值,進(jìn)而逐步估計(jì)出一元二次方程的近似解.下面介紹另外一種估計(jì)一元二次方程近似解的方法,以方程x2-3x-1=0為例,因?yàn)閤≠0,所以先將其變形為x=3+
1
x
,用3+
1
x
代替x,得x=3+
1
x
=3+
1
3+
1
x
.反復(fù)若干次用3+
1
x
代替x,就得到x=3+
1
3+
1
3+
1
3+
1
3+
1
x
形如上式右邊的式子稱為連分?jǐn)?shù).
可以猜想,隨著替代次數(shù)的不斷增加,右式最后的
1
x
對(duì)整個(gè)式子的值的影響將越來越小,因此可以根據(jù)需要,在適當(dāng)時(shí)候把
1
x
忽略不計(jì),例如,當(dāng)忽略x=3+
1
x
中的
1
x
時(shí),就得到x=3;當(dāng)忽略x=3+
1
3+
1
x
中的
1
x
時(shí),就得到x=3+
1
3
;如此等等,于是可以得到一系列分?jǐn)?shù);
3,3+
1
3
,3+
1
3+
1
3
,3+
1
3+
1
3
1
3
,…,即3,
10
3
=3.333…,
33
10
≈3.3.
109
33
=3.303 03…,….
可以發(fā)現(xiàn)它們?cè)絹碓节呌诜(wěn)定,事實(shí)上,這些數(shù)越來越近似于方程x2-3x-1=0的正根,而且它的算法也很簡(jiǎn)單,就是以3為第一個(gè)近似值,然后不斷地求倒數(shù),再加3而已,在計(jì)算機(jī)技術(shù)極為發(fā)達(dá)的今天,只要編一個(gè)極為簡(jiǎn)單的程序,計(jì)算機(jī)就能很快幫你算出它的多個(gè)近似值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(1)求證關(guān)于x的一元二次方程x2+(m-3)x-3m=0一定有兩個(gè)實(shí)數(shù)根;
(2)若關(guān)于x的方程x2-2
2k-3
x+3k-6=0有兩個(gè)不相等的實(shí)數(shù)根,求k的取值范圍;
(3)設(shè)(1)中方程的兩根為a、b,若(2)中的k為整數(shù),且以k、a、b為邊的三角形恰好是一個(gè)直角三角形,試求m的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:中考加速卷  數(shù)學(xué) 題型:022

分別以方程x2-3x-1=0兩根平方為根的一元二次方程為________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

(1)求證關(guān)于x的一元二次方程x2+(m-3)x-3m=0一定有兩個(gè)實(shí)數(shù)根;
(2)若關(guān)于x的方程x2-2
2k-3
x+3k-6=0有兩個(gè)不相等的實(shí)數(shù)根,求k的取值范圍;
(3)設(shè)(1)中方程的兩根為a、b,若(2)中的k為整數(shù),且以k、a、b為邊的三角形恰好是一個(gè)直角三角形,試求m的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案