如圖,AB=AC,BD=CD,求證:∠1=∠2.

證明:∵在△BAD和△CAD中

∴△BAD≌△CAD,
∴∠ADB=∠ADC,
∵∠1+∠ADB=180°,∠2+∠ADC=180°,
∴∠1=∠2.
分析:證△BAD≌△CAD,推出∠ADB=∠ADC,即可推出結論.
點評:本題考查了全等三角形的性質和判定的應用,主要考查學生的推理能力.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

24、如圖,AB=AC=AD.
(1)如果AD∥BC,那么∠C和∠D有怎樣的數(shù)量關系?證明你的結論;
(2)如果∠C=2∠D,那么你能得到什么結論?證明你的結論.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2012•虹口區(qū)一模)已知:如圖,AB=AC,∠DAE=∠B.
求證:△ABE∽△DCA.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2013•來賓)如圖,AB=AC,D,E分別是AB,AC上的點,下列條件中不能證明△ABE≌△ACD的是
( 。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,AB=AC,∠C=67°,AB的垂直平分線EF交AC于點D,求∠DBC的度數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,AB=AC=10,∠A=40°,AB的垂直平分線MN交AC于點D,求:
(1)∠ABD的度數(shù);
(2)若△BCD的周長是m,求BC的長.

查看答案和解析>>

同步練習冊答案