(1999•西安)紅星中學(xué)某班前年暑假將勤工儉學(xué)掙得的班費(fèi)2000元按一年定期存入銀行.去年暑假到期后取出1000元寄往災(zāi)區(qū),將剩下的1000元和利息繼續(xù)按一年定期存入銀行,待今年畢業(yè)后全部捐給母校.若今年到期后取得人民幣(本息和)1155,問銀行一年定期存款的年利率(假定利率不變)是多少?
【答案】分析:根據(jù)“本金×(1+年利率)=本息和”作為相等關(guān)系列方程求解即可.注意去年存的本金為[2000(1+x%)-1000]元.注意根據(jù)實(shí)際意義進(jìn)行值的取舍.
解答:解:設(shè)一年定期存款的年利率為x%,依題意列方程,得
[2000(1+x%)-1000](1+x%)=1155
(1000+2000x%)(1+x%)=1155
1000+20x+10x+0.2x2=1155
0.2x2+30x-155=0
x2+150x-775=0
(x-5)(x+155)=0
x1=5,x2=-155(舍去)
答:一年定期存款的年利率為5%.
點(diǎn)評:找到關(guān)鍵描述語,找到等量關(guān)系準(zhǔn)確的列出方程是解決問題的關(guān)鍵.本題的等量關(guān)系是:本金×(1+年利率)=本息和.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:1999年全國中考數(shù)學(xué)試題匯編《圓》(05)(解析版) 題型:解答題

(1999•西安)如圖,在直角坐標(biāo)系中,以AB為直徑的⊙C交x軸于A,交y軸于B,滿足OA:OB=4:3,以O(shè)C為直徑作⊙D,設(shè)⊙D的半徑為2.
(1)求⊙C的圓心坐標(biāo);
(2)過C作⊙D的切線EF交x軸于E,交y軸于F,求直線EF的解析式;
(3)拋物線y=ax2+bx+c(a≠0)的對稱軸過C點(diǎn),頂點(diǎn)在⊙C上,與y軸交點(diǎn)為B,求拋物線的解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:1999年全國中考數(shù)學(xué)試題匯編《三角形》(03)(解析版) 題型:解答題

(1999•西安)如圖,在直角坐標(biāo)系中,以AB為直徑的⊙C交x軸于A,交y軸于B,滿足OA:OB=4:3,以O(shè)C為直徑作⊙D,設(shè)⊙D的半徑為2.
(1)求⊙C的圓心坐標(biāo);
(2)過C作⊙D的切線EF交x軸于E,交y軸于F,求直線EF的解析式;
(3)拋物線y=ax2+bx+c(a≠0)的對稱軸過C點(diǎn),頂點(diǎn)在⊙C上,與y軸交點(diǎn)為B,求拋物線的解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:1999年全國中考數(shù)學(xué)試題匯編《一次函數(shù)》(02)(解析版) 題型:解答題

(1999•西安)如圖,在直角坐標(biāo)系中,以AB為直徑的⊙C交x軸于A,交y軸于B,滿足OA:OB=4:3,以O(shè)C為直徑作⊙D,設(shè)⊙D的半徑為2.
(1)求⊙C的圓心坐標(biāo);
(2)過C作⊙D的切線EF交x軸于E,交y軸于F,求直線EF的解析式;
(3)拋物線y=ax2+bx+c(a≠0)的對稱軸過C點(diǎn),頂點(diǎn)在⊙C上,與y軸交點(diǎn)為B,求拋物線的解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:1999年全國中考數(shù)學(xué)試題匯編《一元二次方程》(03)(解析版) 題型:解答題

(1999•西安)紅星中學(xué)某班前年暑假將勤工儉學(xué)掙得的班費(fèi)2000元按一年定期存入銀行.去年暑假到期后取出1000元寄往災(zāi)區(qū),將剩下的1000元和利息繼續(xù)按一年定期存入銀行,待今年畢業(yè)后全部捐給母校.若今年到期后取得人民幣(本息和)1155,問銀行一年定期存款的年利率(假定利率不變)是多少?

查看答案和解析>>

同步練習(xí)冊答案