【題目】已知點(diǎn)P(3m6,m1),試分別根據(jù)下列條件,求出點(diǎn)P的坐標(biāo).

(1)點(diǎn)P的橫坐標(biāo)比縱坐標(biāo)大1;

(2)點(diǎn)P在過點(diǎn)A(3,-2),且與x軸平行的直線上;

(3)點(diǎn)Py軸的距離是到x軸距離的2倍.

【答案】(1);(2);(3).

【解析】

1)根據(jù)坐標(biāo)比縱坐標(biāo)大1列出方程求解,進(jìn)一步即可得出答案;

(2)根據(jù)點(diǎn)P在過點(diǎn)A(3,-2),且與x軸平行的直線上,可得與x軸平行的線的解析式為y=-2,最后根據(jù)點(diǎn)P在直線上求解即可;

3)根據(jù)點(diǎn)Py軸的距離是到x軸距離的2倍分情況建立方程求解即可.

(1)∵點(diǎn)P的橫坐標(biāo)比縱坐標(biāo)大1,

3m-6-1=m+1,

m=4

,

∴點(diǎn)P坐標(biāo)為:(6,5) ;

(2) ∵設(shè)過點(diǎn)A3-2),且與x軸平行的線的解析式為y=-2,

∵點(diǎn)P在直線y=-2上,

m+1=-2,

∴m=-3,

,

∴點(diǎn)P坐標(biāo)為:(-15,-2);

(3)∵點(diǎn)Py軸的距離是到x軸距離的2倍,

∴①3m-6= (m+1),

m=;

,,

∴點(diǎn)P的坐標(biāo)為:();

3m-6=- (m+1),

,

∴點(diǎn)P的坐標(biāo)為:();

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在ABE中,C為邊AB延長線上一點(diǎn),BC=AE,點(diǎn)D在∠EBC內(nèi)部,且∠EBD=A=DCB.

(1)求證:ABE≌△CDB.

(2)連結(jié)DE,若∠CDB=60°,AEB=50°,求∠BDE的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】小明在學(xué)習(xí)過程中,對教材中的一個有趣問題做如下探究:

(習(xí)題回顧)已知:如圖1,在ABC中,∠ACB=90°,AE是角平分線,CD是高,AE、CD相交于點(diǎn)F.求證:∠CFE=CEF

(變式思考)如圖2,在ABC中,∠ACB=90°CDAB邊上的高,若ABC的外角∠BAG的平分線交CD的延長線于點(diǎn)F,其反向延長線與BC邊的延長線交于點(diǎn)E,則∠CFE與∠CEF還相等嗎?說明理由;

(探究廷伸)如圖3,在ABC中,在AB上存在一點(diǎn)D,使得∠ACD=B,角平分線AECD于點(diǎn)FABC的外角∠BAG的平分線所在直線MNBC的延長線交于點(diǎn)M.試判斷∠M與∠CFE的數(shù)量關(guān)系,并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC.AB=AC.∠BAC=36°.BD是∠ABC的平分線,AC于點(diǎn)D,EAB的中點(diǎn),連接ED并延長,交BC的延長線于點(diǎn)F,連接AF.求證:(1)EF⊥AB; (2)△ACF為等腰三角形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,直線ab,ABC是等邊三角形,點(diǎn)A在直線a上,邊BC在直線b上,把ABC沿BC方向平移BC的一半得到A′B′C′(如圖);繼續(xù)以上的平移得到圖,再繼續(xù)以上的平移得到圖,…;請問在第100個圖形中等邊三角形的個數(shù)是   

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某校從兩名優(yōu)秀選手中選一名參加全市中小學(xué)運(yùn)動會的男子米跑項目,該校預(yù)先對這兩名選手測試了次,測試成績?nèi)缦卤?/span>

甲的成績(秒)

乙的成績(秒)

為了衡量這兩名選手米跑的水平,你選擇哪些統(tǒng)計量?請分別求出這些統(tǒng)計量的值.

你認(rèn)為選派誰比較合適?為什么?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知函數(shù)y=x+2的圖象與y軸交于點(diǎn)A,一次函數(shù)y=kx+b的圖象經(jīng)過點(diǎn)B(0,4)且與x軸及y=x+2的圖象分別交于點(diǎn)CD,點(diǎn)D的坐標(biāo)為(,n)

(1)n= ,k= ,b=_______

(2)若函數(shù)y=kx+b的函數(shù)值大于函數(shù)y=x+2的函數(shù)值,x的取值范圍是_______

(3)求四邊形AOCD的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,二次函數(shù)的圖象與軸交于、兩點(diǎn),點(diǎn)在原點(diǎn)的左則,點(diǎn)的坐標(biāo)為,與軸交于點(diǎn),點(diǎn)是直線下方的拋物線上一動點(diǎn).

求這個二次函數(shù)的表達(dá)式;

求出四邊形的面積最大時的點(diǎn)坐標(biāo)和四邊形的最大面積;

連結(jié)、,在同一平面內(nèi)把沿軸翻折,得到四邊形,是否存在點(diǎn),使四邊形為菱形?若存在,請求出此時點(diǎn)的坐標(biāo);若不存在,請說明理由;

在直線找一點(diǎn),使得為等腰三角形,請直接寫出點(diǎn)坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,拋物線軸的交點(diǎn)為,與軸的交點(diǎn)分別為,,且,直線軸,在軸上有一動點(diǎn)過點(diǎn)作平行于軸的直線與拋物線、直線的交點(diǎn)分別為、

求拋物線的解析式;

當(dāng)時,求面積的最大值;

當(dāng)時,是否存在點(diǎn),使以、、為頂點(diǎn)的三角形與相似?若存在,求出此時的值;若不存在,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案