如圖,正方形ABCD中,AB=
3
,點(diǎn)E、F分別在BC、CD上,且∠BAE=30°,∠DAF=15°,則△AEF的面積是______.
延長(zhǎng)EB至G,使BG=DF,連接AG,
∵正方形ABCD,
∴AB=AD,∠ABG=∠ADF=∠BAD=90°,
∵BG=DF,
∴△ABG≌△ADF,
∴AG=AF,
∵∠BAE=30°,∠DAF=15°,
∴∠FAE=∠GAE=45°,
∵AE=AE,
∴△FAE≌△GAE,
∵AB=BC=
3
,∠BAE=30°,
∴BE=1,CE=
3
-1,
∵△AGE≌△AFE,
∴∠AFE=∠AGE=75°,
∵∠DFA=90°-∠DAF=75°,
∴∠EFC=180°-∠DFA-∠AFE=180°-75°-75°=30°,
∴CF=3-
3
,
∴S△CEF=
1
2
CE•CF=2
3
-3,
∵△ABG≌△ADF,△FAE≌△GAE,
∴S△AEF=S正方形ABCD-S△ADF-S△AEB-S△CEF=S正方形ABCD-S△AEF-S△CEF,
S△AEF=
1
2
(S正方形ABCD-S△CEF)=3-
3

故答案為:3-
3

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知如下圖所示,在等邊△ABC和等邊△ADE中,點(diǎn)B、A、D在一條直線上,BE、CD交于F.
(1)求證:△BAE≌△CAD.
(2)求∠BFC的大。
(3)在圖1的基礎(chǔ)上,將△ADE繞點(diǎn)A按順時(shí)針?lè)较蛐D(zhuǎn)180°,此時(shí)BE交CD的延長(zhǎng)線于點(diǎn)F,其他條件不變,得到圖2所示的圖形,請(qǐng)直接寫(xiě)出(1)、(2)中結(jié)論是否仍然成立.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

以邊長(zhǎng)為2厘米的正三角形的高為邊長(zhǎng)作第二個(gè)正三角形,以第二個(gè)正三角形的高為邊長(zhǎng)作第三個(gè)正三角形,以此類(lèi)推,則第十個(gè)正三角形的邊長(zhǎng)是( 。
A.2×(
2
2
10厘米
B.2×(
1
2
9厘米
C.2×(
3
2
10厘米
D.2×(
3
2
9厘米

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

如圖,若AD、AE分別是△ABC的高和中線,AD=BE=2,則△ABE的面積為_(kāi)_____.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,直角三角形ABC,∠ACB=90°,分別以AC、BC、AB為邊在AB的同側(cè)作正方形,形成了三塊陰影部分,記陰影AIHJ的面積為S1,陰影DKGBE的面積為S2,陰影FJCK的面積為S3,若S1=8,S2=9,S3=7,則S△ABC=______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

如圖,已知正方形ABCD的面積為144,點(diǎn)F在AD上,點(diǎn)E在AB的延長(zhǎng)線上,Rt△CEF的面積為84.5,那么BE=______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

閱讀:D為△ABC中BC邊上一點(diǎn),連接AD,E為AD上一點(diǎn).
如圖1,當(dāng)D為BC邊的中點(diǎn)時(shí),有S△EBD=S△ECD,S△ABE=S△ACE;
當(dāng)
BD
DC
=m
時(shí),有
S△EBD
S△ECD
=
S△ABE
S△ACE
=m

解決問(wèn)題:
在△ABC中,D為BC邊的中點(diǎn),P為AB邊上的任意一點(diǎn),CP交AD于點(diǎn)E、設(shè)△EDC的面積為S1,△APE的面積為S2
(1)如圖2,當(dāng)
BP
AP
=1
時(shí),
S1
S2
的值為_(kāi)_____;
(2)如圖3,當(dāng)
BP
AP
=n
時(shí),
S1
S2
的值為_(kāi)_____;
(3)若S△ABC=24,S2=2,則
BP
AP
的值為_(kāi)_____.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

一塊三角形地帶均勻的長(zhǎng)著青草,西邊的地可放羊5只,南邊的地可放羊10只,東邊的地可放羊8只,則北邊的地可放羊數(shù)為(  )
A.18只B.20只C.22只D.24只

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,△ABC的面積為1.分別倍長(zhǎng)AB,BC,CA得到△A1B1C1.再分別倍長(zhǎng)A1B1,B1C1,C1A1得到△A2B2C2.…按此規(guī)律,倍長(zhǎng)n次后得到的△AnBnCn的面積為_(kāi)_____.

查看答案和解析>>

同步練習(xí)冊(cè)答案