32、如圖,已知BO平分∠CBA,CO平分∠ACB,MN∥BC,且過點O,若AB=12,AC=14,則△AMN的周長是
26
分析:利用角平分線的性質(zhì)和平行線的性質(zhì)求得MN的長就是BM+CN的長,所以三角形的周長就是AB+AC的長.
解答:解:BO平分∠CBA,CO平分∠ACB,
∴∠MBO=∠CBO,∠OCB=∠OCN;
∵MN∥BC,
∴∠MOB=∠CBO,∠NOC=∠OCB,
∴∠MBO=∠MOB,∠NOC=∠NCO;
∴OM=BM,CN=ON,
∴△AMN的周長=12+14=26.
點評:本題主要考查角平分線的性質(zhì)和平行線的性質(zhì)以及三角形的周長求法,合理利用圖中線段的相等關系是關鍵.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

15、如圖,已知BO平分∠CBA,CO平分∠ACB,且MN∥BC,設AB=12,BC=24,AC=18,則△AMN的周長是
30

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:填空題

如圖,已知BO平分∠CBA,CO平分∠ACB,且MN∥BC,設AB=12,BC=24,AC=18,則△AMN的周長是________.

查看答案和解析>>

科目:初中數(shù)學 來源:2011-2012學年廣東省揭東縣炮臺鎮(zhèn)豐溪中學九年級(上)第一次月考數(shù)學試卷(解析版) 題型:填空題

如圖,已知BO平分∠CBA,CO平分∠ACB,且MN∥BC,設AB=12,BC=24,AC=18,則△AMN的周長是   

查看答案和解析>>

科目:初中數(shù)學 來源:2009-2010學年遼寧省丹東市第五中學九年級(上)第一次月考數(shù)學試卷(解析版) 題型:填空題

如圖,已知BO平分∠CBA,CO平分∠ACB,且MN∥BC,設AB=12,BC=24,AC=18,則△AMN的周長是   

查看答案和解析>>

同步練習冊答案