【題目】如圖,E,F是四邊形ABCD的對(duì)角線BD上的兩點(diǎn),AE∥CF,AB∥CD,BE=DF,則下列結(jié)論:
①AE=CF,②AD=BC,③AD∥BC,④∠BCF=∠DAE,
其中正確的個(gè)數(shù)為( 。
A.1個(gè)B.2個(gè)C.3個(gè)D.4個(gè)
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】閱讀與思考;
婆羅摩笈多是一位印度數(shù)學(xué)家與天文學(xué)家,書(shū)寫(xiě)了兩部關(guān)于數(shù)學(xué)與天文的書(shū)籍,他的一些數(shù)學(xué)成就在世界數(shù)學(xué)史上有較高的地位,他的負(fù)數(shù)及加減法運(yùn)算僅晚于中國(guó)九章算術(shù)而他的負(fù)數(shù)乘除法法則在全世界都是領(lǐng)先的,他還提出了著名的婆羅摩笈多定理,該定理的內(nèi)容及證明如下:
已知:如圖,四邊形ABCD內(nèi)接與圓O對(duì)角線AC⊥BD于點(diǎn)M,ME⊥BC于點(diǎn)E,延長(zhǎng)EM交CD于F,求證:MF=DF
證明∵AC⊥BD,ME⊥BC
∴∠CBD=∠CME
∵∠CBD=∠CAD,∠CME=∠AMF
∴∠CAD=∠AMF
∴AF=MF
∵∠AMD=90°,同時(shí)∠MAD+∠MDA=90°
∴∠FMD=∠FDM
∴MF=DF,即F是AD中點(diǎn).
(1)請(qǐng)你閱讀婆羅摩笈多定理的證明過(guò)程,完成婆羅摩笈多逆定理的證明:
已知:如圖1,四邊形ABCD內(nèi)接與圓O,對(duì)角線AC⊥BD于點(diǎn)M,F是AD中點(diǎn),連接FM并延長(zhǎng)交BC于點(diǎn)E,求證:ME⊥BC
(2)已知如圖2,△ABC內(nèi)接于圓O,∠B=30°∠ACB=45°,AB=2,點(diǎn)D在圓O上,∠BCD=60°,連接AD 交BC于點(diǎn)P,作ON⊥CD于點(diǎn)N,延長(zhǎng)NP交AB于點(diǎn)M,求證PM⊥BA并求PN的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知:⊙O為Rt△ABC的外接圓,點(diǎn)D在邊AC上,AD=AO;
(1)如圖1,若弦BE∥OD,求證:OD=BE;
(2)如圖2,點(diǎn)F在邊BC上,BF=BO,若OD=2 , OF=3,求⊙O的直徑.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】有若干個(gè)數(shù),第一個(gè)記為,第二個(gè)記為,第三個(gè)記為…. 若,從第2個(gè)數(shù)起,每個(gè)數(shù)都等于“1與它前面那個(gè)數(shù)的差的倒數(shù)”.
(1)計(jì)算的值.
(2)根據(jù)以上計(jì)算結(jié)果,直接寫(xiě)出,的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】三點(diǎn)在數(shù)軸上,點(diǎn)表示的數(shù)是,從點(diǎn)出發(fā)向右平移7個(gè)單位長(zhǎng)度得到點(diǎn)。
(1)求出點(diǎn)表示的數(shù),畫(huà)一條數(shù)軸并在數(shù)軸上標(biāo)出點(diǎn)和點(diǎn);
(2)若此數(shù)軸在一張紙上,將紙沿某一條直線對(duì)折,此時(shí)點(diǎn)與表示數(shù)的點(diǎn)剛好重合,折痕與數(shù)軸有一個(gè)交點(diǎn),求點(diǎn)表示的數(shù)的相反數(shù)(原卷無(wú)此問(wèn));
(3)在數(shù)軸上有一點(diǎn),點(diǎn)到點(diǎn)和點(diǎn)的距離之和為11,求點(diǎn)所表示的數(shù);
(4)從初始位置分別以1單位長(zhǎng)度和2單位長(zhǎng)度的速度同時(shí)向左運(yùn)動(dòng),是否存在的值,使秒后點(diǎn)到的距離與點(diǎn)到原點(diǎn)距離相等?若存在請(qǐng)求出的值;若不存在,請(qǐng)說(shuō)明理由。
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】一文體用品商店為吸引中學(xué)生顧客,在店內(nèi)出示了一道數(shù)學(xué)題,凡是能正確解答這道題的,店內(nèi)商品一律給該生9折優(yōu)惠或每購(gòu)滿10元立減3元(不足10元部分不減)優(yōu)惠方式.題目是這樣的:購(gòu)一個(gè)筆盒和2個(gè)羽毛球共需26元,買(mǎi)2個(gè)筆盒和一個(gè)羽毛球共需37元,
(1)請(qǐng)列方程或方程組解答商家提出的問(wèn)題;問(wèn):筆盒與羽毛球的單價(jià)各是多少元?
(2)一位同學(xué)回答對(duì)了問(wèn)題,他想購(gòu)買(mǎi)羽毛球和筆盒各一個(gè),請(qǐng)列舉能享受到優(yōu)惠的購(gòu)買(mǎi)方式,并幫助他選擇一種最優(yōu)惠的購(gòu)買(mǎi)方式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,是一塊在電腦屏幕上出現(xiàn)的長(zhǎng)方形色塊圖,由6個(gè)不同的正方形組成。設(shè)中間最小的一個(gè)正方形邊長(zhǎng)為1,則這個(gè)長(zhǎng)方形色塊圖的面積為_____________.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com