【題目】如圖,四邊形中,已知,,對角線平分,,,則邊的長度為________.
【答案】或
【解析】
如圖,作輔助線;首先證明△FBD∽△GDA,進(jìn)而得到DGDF=BFAG①;設(shè)BE=λ,將①式中的線段分別用λ來表示,得到關(guān)于λ的方程,解方程即可解決問題.
解:如圖,
過點(diǎn)D作DE⊥AB于點(diǎn)E;在ED上截取EF=EB,EG=EA;
連接AG,BF;則∠BFE=∠AGE=45°,
∴∠BFD=∠DGA=135°;
∵BD平分∠ABC,且∠BCD=90°,
∴DE=DC=12,BE=BC;
∵∠FBD+∠BDF=∠BDF+∠ADG=45°,
∴∠FBD=∠GDA;
∴△FBD∽△GDA,
∴=,即DGDF=BFAG;
設(shè)BE=λ,則DF=12-λ,EG=EA=10-λ;
BF=λ,AG=EG=(10-λ),
∴(λ+2)(12-λ)=(10-λ)λ,
整理得:λ2-10λ+24=0,
解得:λ=4或6,
即邊BC的長度為4或6.
由勾股定理得:BD2=BC2+CD2,
∴BD=4或6
故答案為:4或6.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,點(diǎn)B在x軸的正半軸上,AO=AB,∠OAB=90°,OB=12,點(diǎn)C、D均在邊OB上,且∠CAD=45°,若△ACO的面積等于△ABO面積的,則點(diǎn)D的坐標(biāo)為 _______ 。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】己知二次函數(shù)中,函數(shù)與自變量的部分對應(yīng)值如下表:
… | 1 | 0 | 1 | 2 | 3 | 4 | … | |
… | 10 | 5 | 2 | 1 | 2 | 5 | … |
(1)求該二次函數(shù)的解析式;
(2)當(dāng)為何值時(shí),有最小值,最小值是多少?
(3)若,兩點(diǎn)都在該函數(shù)的圖像上,試比較與的大小.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為弘揚(yáng)中華傳統(tǒng)文化,黔南州近期舉辦了中小學(xué)生“國學(xué)經(jīng)典大賽”.比賽項(xiàng)目為:A.唐詩;B.宋詞;C.論語;D.三字經(jīng).比賽形式分“單人組”和“雙人組”.
(1)小麗參加“單人組”,她從中隨機(jī)抽取一個(gè)比賽項(xiàng)目,恰好抽中“三字經(jīng)”的概率是多少?
(2)小紅和小明組成一個(gè)小組參加“雙人組”比賽,比賽規(guī)則是:同一小組的兩名隊(duì)員的比賽項(xiàng)目不能相同,且每人只能隨機(jī)抽取一次,則恰好小紅抽中“唐詩”且小明抽中“宋詞”的概率是多少?請用畫樹狀圖或列表的方法進(jìn)行說明.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示的平面直角坐標(biāo)系中,直線m上各點(diǎn)的橫坐標(biāo)都為1(記作直線x=1),A,B,C三點(diǎn)的坐標(biāo)分別為A(﹣2,3),B(﹣3,0),C(﹣1,2).
(1)畫出△ABC關(guān)于直線x=1對稱的△A1B1C1并寫出A1,B1,C1的坐標(biāo).
(2)若△ABC內(nèi)部有一點(diǎn)H(﹣2,b),求點(diǎn)H關(guān)于直線x=a對稱的點(diǎn)H1的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線y1=(x+1)2+1與y2=a(x﹣4)2﹣3交于點(diǎn)A(1,3),過點(diǎn)A作x軸的平行線,分別交兩條拋物線于B、C兩點(diǎn),且D、E分別為頂點(diǎn).則下列結(jié)論:①a=;②AC=AE;③△ABD是等腰直角三角形;④當(dāng)x>1時(shí),y1>y2 其中正確結(jié)論的個(gè)數(shù)是( )
A. 1個(gè)B.2個(gè)C.3個(gè)D.4個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】閱讀材料:
一般地,當(dāng)α、β為任意角時(shí),tan(α+β)與tan(α﹣β)的值可以用下面的公式求得:tan(α±β)=.
根據(jù)以上材料,解決下列問題:
(1)求tan75°的值;
(2)都勻文峰塔,原名文筆塔,始建于明代萬歷年間,系五層木塔.文峰塔的木塔年久傾毀,僅存塔基.1983年,人民政府撥款維修文峰塔,成為今天的七層六面實(shí)心石塔(圖1),小華想用所學(xué)知識來測量該鐵塔的高度,如圖2,已知小華站在離塔底中心A處5.7米的C處,測得塔頂?shù)难鼋菫?/span>75°,小華的眼睛離地面的距離DC為1.72米,請幫助小華求出文峰塔AB的高度.(精確到1米,參考數(shù)據(jù)≈1.732,≈1.414)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為解決樓房之間的擋光問題,某地區(qū)規(guī)定:兩幢樓房間的距離至少為40米,中午12時(shí)不能擋光.如圖,某舊樓的一樓窗臺高1米,要在此樓正南方40米處再建一幢新樓.已知該地區(qū)冬天中午12時(shí)陽光從正南方照射,并且光線與水平線的夾角最小為30°,在不違反規(guī)定的情況下,請問新建樓房最高多少米?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】閱讀下面文字并填空:數(shù)學(xué)課上張老師出了這樣一道題:“如圖,在中,,是中線,點(diǎn)為的中點(diǎn),連接.求證:”
張老師給出了如下簡要“要證,就是要證線段的倍分問題,所以有兩個(gè)思路,思路一:找,故取的中點(diǎn),連接,只要證即可.這就將證明線段倍分問題______為證明線段相等問題,只要證出______,則結(jié)論成立.思路二:變為,因?yàn)樾枰业?/span>,于是延長至點(diǎn),使,只要證______即可.連接,若證出____________則結(jié)論成立.”你認(rèn)為在現(xiàn)階段可以用思路______來完成這個(gè)證明.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com