【題目】如圖,已知平行四邊形ABCD中,E、F分別BC、AD邊上,AE=BF,AE與BF交于G,ED與CF交于H.求證:

(1)GH∥BC;
(2)GH= AD.

【答案】
(1)證明:∵四邊形ABCD為平行四邊形,

∴AD∥BC,

∵AE=BF,

∴四邊形ABFE為平行四邊形,

∵AD=BC,

∴DE=FC,

同理可得四邊形CDEF為平行四邊形,

∴G為AF的中點,H為DF的中點,

∴GH為△ADF的中位線,

∴GH∥AD,

∴GH∥BC;


(2)證明:∵GH為△ADF的中位線,

∴GH= AD.


【解析】(1)根據(jù)已知四邊形ABCD為平行四邊形,AE=BF,易證得四邊形ABFE為平行四邊形,四邊形CDEF為平行四邊形,根據(jù)平行四邊形的性質得出GH為△ADF的中位線,即可證得結論。
(2)由(1)證明過程可知GH為△ADF的中位線,即可證得結論。
【考點精析】本題主要考查了三角形中位線定理和平行四邊形的判定與性質的相關知識點,需要掌握連接三角形兩邊中點的線段叫做三角形的中位線;三角形中位線定理:三角形的中位線平行于三角形的第三邊,且等于第三邊的一半;若一直線過平行四邊形兩對角線的交點,則這條直線被一組對邊截下的線段以對角線的交點為中點,并且這兩條直線二等分此平行四邊形的面積才能正確解答此題.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知 ,在射線 上取點 ,以 為圓心的圓與 相切;在射線 上取點 ,以 為圓心, 為半徑的圓與 相切;在射線 上取點 ,以 為圓心, 為半徑的圓與 相切; ;在射線 上取點 ,以 為圓心, 為半徑的圓與 相切.若 的半徑為 ,則 的半徑長是

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】正方形ABCD中,AB=2,E是AB的中點,P是對角線AC上的一個動點,則PE+PB的最小值是

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】一輛貨車從地勻速駛往相距350km地,當貨車行駛1小時經過途中的地時,一輛快遞車恰好從地出發(fā)以另一速度勻速駛往地,當快遞車到達地后立即掉頭以原來的速度勻速駛往地.(貨車到達地,快遞車到達地后分別停止運動)行駛過程中兩車與地間的距離(單位:)與貨車從出發(fā)所用的時間(單位:)間的關系如圖所示.則貨車到達地后,快遞車再行駛______到達地.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某同學要證明命題平行四邊形的對邊相等.是正確的,他畫出了圖形,并寫出了如下已知和不完整的求證.

已知:如圖,四邊形ABCD是平行四邊形.

求證:AB=CD,

(1)補全求證部分;

(2)請你寫出證明過程.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,有一個轉盤,轉盤被分成4個相同的扇形,顏色分為紅、綠、黃三種,指針的位置固定,轉動轉盤后任其自由停止,其中的某個扇形會恰好停在指針所指的位置(指針指向兩個扇形的交線時,當作指向右邊的扇形),求下列事件的概率:

(1)指針指向綠色;

(2)指針指向紅色或黃色;

(3)指針不指向紅色.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,矩形ABOC的頂點O在坐標原點,頂點B,C分別在x,y軸的正半軸上,頂點A在反比例函數(shù)y= (k為常數(shù),k>0,x>0)的圖象上,將矩形ABOC繞點A按逆時針反向旋轉90°得到矩形AB′O′C′,若點O的對應點O′恰好落在此反比例函數(shù)圖象上,則 的值是

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】下列圖形中,是軸對稱圖形但不是中心對稱圖形的是(
A.
B.
C.
D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在矩形ABCD中,E是BC的中點,將△ABE沿AE折疊后得到△AFE,點F在矩形ABCD內部,延長AF交CD于點G.

(1)猜想線段GF與GC有何數(shù)量關系?并證明你的結論;
(2)若AB=3,AD=4,求線段GC的長.

查看答案和解析>>

同步練習冊答案