【題目】如圖,M是△ABC的邊BC的中點,AN平分∠BAC,BN⊥AN于點N,延長BN交AC于點D,已知AB=10,BC=15,MN=3
(1)求證:BN=DN;
(2)求△ABC的周長.
科目:初中數(shù)學 來源: 題型:
【題目】解放橋是天津市的標志性建筑之一,是一座全鋼結構的部分可開啟的橋梁. (Ⅰ)如圖①,已知解放橋可開啟部分的橋面的跨度AB等于47m,從AB的中點C處開啟,則AC開啟至AC′的位置時,AC′的長為 m;
(Ⅱ)如圖②,某校數(shù)學興趣小組要測量解放橋的全長PQ,在觀景平臺M處測得∠PMQ=54°,沿河岸MQ前行,在觀景平臺N處測得∠PNQ=73°,已知PQ⊥MQ,MN=40m,求解放橋的全長PQ(tan54°≈1.4,tan73°≈3.3,結果保留整數(shù)).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某修理廠需要購進甲、乙兩種配件,經(jīng)調查,每個甲種配件的價格比每個乙種配件的價格少0.4萬元,且用16萬元購買的甲種配件的數(shù)量與用24萬元購買的乙種配件的數(shù)量相同.
(1)求每個甲種配件、每個乙種配件的價格分別為多少萬元;
(2)現(xiàn)投入資金80萬元,根據(jù)維修需要預測,甲種配件要比乙種配件至少要多22件,問乙種配件最多可購買多少件.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】
(1)填空:點B在數(shù)軸上表示的數(shù)是 ,點C在數(shù)軸上表示的數(shù)是 ;
(2)若線段CD以每秒3個單位的速度向右勻速運動,當點D運動到A時,線段CD與線段AB開始有重疊部分,此時線段CD運動了 秒;
(3)在(2)的條件下,線段CD繼續(xù)向右運動,問再經(jīng)過 秒后,線段CD與線段AB不再有重疊部分;
(4)若線段AB、CD同時從圖中位置出發(fā),線段AB以每秒2個單位的速度向左勻速運動,線段CD仍以每秒3個單位的速度向右勻速運動,點P是線段CD的中點,問運動幾秒時,點P與線段AB兩端點(A或B)的距離為1個單位?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】一列火車勻速行駛,經(jīng)過一條長300米的隧道需要20秒的時間.隧道的頂上有一盞燈,垂直向下發(fā)光,燈光照在火車上的時間是10秒.求這列火車的長度.
小冉根據(jù)學習解決應用問題的經(jīng)驗對上面問題進行了探究,下面是小冉的探究過程,請補充完成:
設這列火車的長度是x米,那么
(1)從車頭經(jīng)過燈下到車尾經(jīng)過燈下,火車所走的路程是 米,這段時間內(nèi)火車的平均速度是 米/秒;
(2)從車頭進入隧道到車尾離開隧道,火車所走的路程是 米,這段時間內(nèi)火車的平均速度是 米/秒;
(3)火車經(jīng)過燈下和火車通過隧道的平均速度的關系是 ;
(4)由此可以列出方程并求解出這列火車的長度(請列方程求解)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABC中,點D,E分別是AB,AC的中點,連接DE并延長到點F,使EF=ED,連接CF.
(1)四邊形DBCF是平行四邊形嗎?說明理由;
(2)DE與BC有什么樣的位置關系和數(shù)量關系?說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知:如圖,在△ABC中,DE、DF是△ABC的中位線,連接EF、AD,其交點為O.求證:
(1)△CDE≌△DBF;
(2)OA=OD.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】下列說法中正確的是( )
A. 若|a|=﹣a,則 a 一 定是負數(shù)
B. 單項式 x3y2z 的系數(shù)為 1,次數(shù)是 6
C. 若 AP=BP,則點 P 是線段 AB 的中點
D. 若∠AOC=∠AOB,則射線 OC 是∠AOB 的平分線
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知:如圖所示,在平面直角坐標系xOy中,∠C=90°,OB=25,OC=20,若點M是邊OC上的一個動點(與點O、C不重合),過點M作MN∥OB交BC于點N.
(1)求點C的坐標;
(2)當△MCN的周長與四邊形OMNB的周長相等時,求CM的長;
(3)在OB上是否存在點Q,使得△MNQ為等腰直角三角形?若存在,請求出此時MN的長;若不存在,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com