如圖,AB是⊙O的直徑,點(diǎn)C在⊙O上,CE⊥AB于E,CD平分∠ECB,交過點(diǎn)B的射線于D,交AB于F,且BC=BD.
(1)求證:BD是⊙O的切線;
(2)若AE=9,CE=12,求BF的長.

【答案】分析:(1)要證明BD是⊙O的切線,由已知條件轉(zhuǎn)化為證明∠DBA=90°即可;
(2)連接AC,利用三角形相似求出BE的值,由勾股定理求出BC的值,由已知條件再證明△EFC∽△BFD,相似三角形的性質(zhì)利用:對(duì)應(yīng)邊的比值相等即可求出BF的長.
解答:(1)證明:∵CE⊥AB,
∴∠CEB=90°.
∵CD平分∠ECB,BC=BD,
∴∠1=∠2,∠2=∠D.
∴∠1=∠D,
∴CE∥BD,
∴∠DBA=∠CEB=90°,
∵AB是⊙O的直徑,
∴BD是⊙O的切線;

(2)解:連接AC,
∵AB是⊙O直徑,
∴∠ACB=90°.
∵CE⊥AB,
可得CE2=AE•EB,
∵AE=9,CE=12,
∴EB=16,
在Rt△CEB中,∠CEB=90,由勾股定理得 BC=20,
∴BD=BC=20,
∵∠1=∠D,∠EFC=∠BFD,
∴△EFC∽△BFD,
=

∴BF=10.
點(diǎn)評(píng):本題考查了切線的判定定理、圓周角定理、相似三角形判定和相似三角形的性質(zhì)以及勾股定理的運(yùn)用,題目綜合性很強(qiáng),難度不大.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

8、如圖,AB是鉛直地豎立在坡角為30°的山坡上的電線桿,當(dāng)陽光與水平線成60°角時(shí),電線桿的影子BC的長度為4米,則電線桿AB的高度為(  )

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

小亮家窗戶上的遮雨罩是一種玻璃鋼制品,它的頂部是圓柱側(cè)面的一部分(如圖1),它的側(cè)面邊緣上有兩條圓。ㄈ鐖D2),其中頂部圓弧AB的圓心O1在豎直邊緣AD上,另一條圓弧BC的圓心O2在水平邊緣DC的延長線上,其圓心角為90°,請(qǐng)你根據(jù)所標(biāo)示的尺寸(單位:cm)解決下面的問題.(玻璃鋼材料的厚度忽略不計(jì),π取3.1416)
(1)計(jì)算出弧AB所對(duì)的圓心角的度數(shù)(精確到0.01度)及弧AB的長度;(精確到0.1cm)
(2)計(jì)算出遮雨罩一個(gè)側(cè)面的面積;(精確到1cm2
(3)制做這個(gè)遮雨罩大約需要多少平方米的玻璃鋼材料.(精確到精英家教網(wǎng)0.1平方米)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖所示是永州八景之一的愚溪橋,橋身橫跨愚溪,面臨瀟水,橋下冬暖夏涼,常有漁船停泊橋下避曬納涼.已知主橋拱為拋物線型,在正常水位下測得主拱寬24m,最高點(diǎn)離水面8m,以水平線AB為x軸,AB的中點(diǎn)為原點(diǎn)建立坐標(biāo)系.
①求此橋拱線所在拋物線的解析式.
②橋邊有一浮在水面部分高4m,最寬處16m的河魚餐船,如果從安全方面考慮,要求通過愚溪橋的船只,其船身在鉛直方向上距橋內(nèi)壁的距離不少于0.5m.探索此船能否通過愚溪橋?說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:初中數(shù)學(xué)解題思路與方法 題型:047

已知如圖,AB是半圓直經(jīng),△ACD內(nèi)接于半⊙O,CE⊥AB于E,延長AD交EC的延長線于F,求證:AC·CD=AD·FC.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:單選題

如圖,AB是鉛直地豎立在坡角為30°的山坡上的電線桿,當(dāng)陽光與水平線成60°角時(shí),電線桿的影子BC的長度為4米,則電線桿AB的高度為


  1. A.
    4米
  2. B.
    6米
  3. C.
    8米
  4. D.
    10米

查看答案和解析>>

同步練習(xí)冊(cè)答案