【題目】如圖,二次函數(shù)y=ax2+bx+c的圖象與y軸正半軸相交,其頂點(diǎn)的坐標(biāo)為(,1),下列結(jié)論:①c>0;②b2﹣4ac>0;③a+b=0;④4ac﹣b2>4a,其中錯(cuò)誤的是( )
A. ① B. ② C. ③ D. ④
【答案】D
【解析】
①根據(jù)拋物線與y軸的交點(diǎn)坐標(biāo)即可確定;
②根據(jù)拋物線與x軸的交點(diǎn)情況即可判定;
③根據(jù)拋物線的對(duì)稱軸即可判定;
④根據(jù)拋物線的頂點(diǎn)縱坐標(biāo)即可判定.
解:①拋物線與y軸正半軸相交,
∴c>0,故①正確;
②拋物線與x軸相交于兩個(gè)交點(diǎn),
∴b2﹣4ac>0,故②正確;
③∵拋物線的對(duì)稱軸為x=,
∴x=﹣=,
∴a+b=0,故③正確;
④∵拋物線頂點(diǎn)的縱坐標(biāo)為1,
∴=1,
∴4ac﹣b2=4a,故④錯(cuò)誤;
其中錯(cuò)誤的是④.
故選D.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,D是等邊△ABC的AB邊上的一動(dòng)點(diǎn)(不與端點(diǎn)A、B重合),以CD為一邊向上作等邊△EDC,連接AE.
(1)無(wú)論D點(diǎn)運(yùn)動(dòng)到什么位置,圖中總有一對(duì)全等的三角形,請(qǐng)找出這一對(duì)三角形,并證明你得出的結(jié)論;
(2)D點(diǎn)在運(yùn)動(dòng)過(guò)程中,直線AE與BC始終保持怎樣的位置關(guān)系?并說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ACD中,AD=9,CD=3,△ABC中,AB=AC.
(1)如圖1,若∠CAB=60°,∠ADC=30°,在△ACD外作等邊△ADD′
①求證:BD=CD′;
②求BD的長(zhǎng).
(2)如圖2,若∠CAB=90°,∠ADC=45°,求BD的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】(本題10分)如圖,直線y=x+m和拋物線y=+bx+c都經(jīng)過(guò)點(diǎn)A(1,0),
B(3,2).
(1)求m的值和拋物線的解析式;
(2)求不等式x2+bx+c>x+m的解集.(直接寫(xiě)出答案)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,函數(shù)的圖像分別交軸、軸于兩點(diǎn).過(guò)點(diǎn)的直線交軸正半軸于點(diǎn),且點(diǎn)為線段的中點(diǎn).
(1)求直線的表達(dá)式;
(2)如果四邊形是平行四邊形,求點(diǎn)的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖是二次函數(shù)圖象的一部分,其對(duì)稱軸為x=﹣1,且過(guò)點(diǎn)(﹣3,0).下列說(shuō)法:①abc<0;②2a﹣b=0;③4a+2b+c<0;④若(﹣5,y1),(,y2)是拋物線上兩點(diǎn),則
y1>y2.其中說(shuō)法正確的是( )
A. ①② B. ②③ C. ①②④ D. ②③④
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】下列命題的逆命題是真命題的是( )
A.兩直線平行,同位角相等
B.等邊三角形是銳角三角形
C.如果兩個(gè)實(shí)數(shù)是正數(shù),那么它們的積是正數(shù)
D.全等三角形的對(duì)應(yīng)角相等
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖①,已知拋物線經(jīng)過(guò)點(diǎn)A(0,3),B(3,0),C(4,3).
(1)求拋物線的函數(shù)表達(dá)式;
(2)求拋物線的頂點(diǎn)坐標(biāo)和對(duì)稱軸;
(3)把拋物線向上平移,使得頂點(diǎn)落在x軸上,直接寫(xiě)出兩條拋物線、對(duì)稱軸和y軸圍成的圖形的面積S(圖②中陰影部分).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,點(diǎn)B、E分別在AC、DF上,AF分別交BD、CE于點(diǎn)M、N,∠A=∠F,∠1=∠2.
(1)求證:四邊形BCED是平行四邊形;
(2)已知DE=2,連接BN,若BN平分∠DBC,求CN的長(zhǎng).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com